Experimental Test of Ignition Timing with Programable CDI on Performance Single Cylinder Otto Engine

Rendy Adhi Rachmanto, Martinus Darmawan Bagas Wijayanto, Wibawa Endra Juwana, Pramodkumar Siddappa Kataraki

Abstract

Ignition timing is sparking from the spark plug based on the ignition angle during the compression stroke in the combustion chamber relative to the piston position and the crankshaft angular speed. Adjusting the ignition angle is one method to optimize the combustion process in the engine. An optimal combustion process can improve engine performance and reduce fuel consumption. This study investigates optimal data from ignition angle changes using a programmable Capacitive Discharge Ignition (CDI). The test was performed on a single-cylinder four-stroke Otto engine with standard ignition angle variations, +3°, +6°, and +9° before Top Dead Centre (TDC). The test results show that torque and power have increased while brake-specific fuel consumption has decreased. Optimal data acquisition at ignition angle of +9° with peak torque value of 6.91 Nm and peak power value of 4.80 kW, while the lowest value of specific fuel consumption is 0.234 kg/kWh, and the highest value of thermal efficiency is 36%. From this study, it was concluded that the ignition timing could affect the engine performance.

Full Text:

PDF

References

1. S. K. Hotta, N. Sahoo, K. Mohanty, and V. Kulkarni, “Ignition timing and compression ratio as effective means for the improvement in the operating characteristics of a biogas fueled spark ignition engine,” Renew. Energy, vol. 150, pp. 854-867, 2020.

2. C. Gong, Z. Li, Y. Chen, J. Liu, F. Liu, and Y. Han, “Influence of ignition timing on combustion and emissions of a spark-ignition methanol engine with added hydrogen under lean-burn conditions,” Fuel, vol. 235, pp. 227-238, 2019.

3. B. Wu, L. Wang, X. Shen, R. Yan, and P. Dong, “Comparison of lean burn characteristics of an SI engine fueled with methanol and gasoline under idle condition,” Appl. Therm. Eng., vol. 95, pp. 264-270, 2016.

4. T. Su, C. Ji, S. Wang, L. Shi, J. Yang, and X. Cong, “Effect of spark timing on performance of a hydrogen-gasoline rotary engine,” Energy Convers. Manag., vol. 148, pp. 120-127, 2017.

5. S. A. Binjuwair, A. M. Alkhedhair, A. A. Alharbi, and I. A. Alshunifi, “Combustion and Emission Analysis of SI Engine Fuelled by Saudi Arabian Gasoline RON91 and RON95 with Variable Compression Ratios and Spark Timing,” Open Access Library J., vol. 4, no. 12, article no. e4184, 2017.

6. Su Su Yi Mon, “Capacitive Discharge Ignition CDI System for Spark Ignition SI Engine Pulse Control Circuit,” Int. J. Trend Sci. Res. Dev. Int. J. Trend Sci. Res. Dev., vol. 3, no. 5, pp. 1925-1929, 2019.

7. D. Jung, K. Sasaki, and N. Iida, “Effects of increased spark discharge energy and enhanced in-cylinder turbulence level on lean limits and cycle-to-cycle variations of combustion for SI engine operation,” Appl. Energy, vol. 205, pp. 1467-1477, 2017.

8. R. Sukarno, D. R. B. Syaka, and A. R. Asier, “Pengaruh Perubahan Ignition Timing Terhadap Kinerja Mesin Sepeda Motor Automatic 115CC,” Jurnal Konversi dan Manufaktur UNJ, vol. 4, no. 1, pp. 45-50, 2017. (in Indonesian).

9. W. N. Healtanto, A. Sujono, and B. Santoso, Sistem Pengapian CDI dengan Sudut Pengapian Bervariasi untuk Peningkatan Kinerja Motor, Surakarta: Universitas Sebelas Maret, 2017. (in Indonesian).

10. S. Machmud, “Pengaruh Variasi Unjuk Derajat Pengapian Terhadap Kerja Mesin,” Jurnal Teknik, vol. 3, no. 1, pp. 58-64, 2013. (in Indonesian).

11. W. Wagino, N. Jalinus, R. Refdinal, I. Nanda, and J. R. Firdaus, “The Effect of Changes in Ignition Timing on Power, Torque and Fuel Consumption on the Honda Supra X 125CC,” Jurnal Pendidikan Tambusai, vol. 5, no. 3, pp. 9162-9167, 2021.

12. Z. Arifin, D. D. D. P. Tjahjana, R. A. Rachmanto, S. Suyitno, S. D. Prasetyo, and T. Trismawati, “Redesign Mata Bor Tanah Untuk Pembuatan Lubang Biopori Di Desa Puron, Kecamatan Bulu, Kabupaten Sukoharjo,” Mekanika Majalah Ilmiah Mekanika, vol. 19, no. 2, pp. 60-67, 2020.(in Indonesian).

13. S. S. Sandhu, M. K. G. Babu, and L. M. Das, “Performance and combustion characteristics of a typical motor bike engine operated on blends of CNG and hydrogen using electronically controlled solenoid actuated injection system,” ARPN J. Eng. Appl. Sci., vol. 6, no. 2, pp. 1819-6608, 2011.

14. B. Pranoto, C. Gunawan, H. I. Firmansyah, H. Wicaksono, A. A. Nugraha, and M. Trifiananto, “Design And Control System of Automatic Control System of Coal Flow on Belt Conveyor Installation,” Mekanika Majalah Ilmiah Mekanika, vol. 20, no. 2, pp. 86-92, 2021.

15. P. Otchere, J. Pan, B. Fan, W. Chen, Y. Lu, and L. Jianxing, “Mixture formation and combustion process of a biodiesel fueled direct injection rotary engine (DIRE) considering injection timing, spark timing and equivalence ratio–CFD study,” Energy Convers. Manag., vol. 217, article no. 112948, 2020.

16. Z. Arifin, S. D. Prasetyo, S. Suyitno, D. D. D. P. Tjahjana, R. A. Rachmanto, W. E. Juwana, C. H. B. Apribowo, and T. Trismawati, “Rancang Bangun Alat Elliptical trainer Outdoor,” Mekanika Majalah Ilmiah Mekanika, vol. 19, no. 2, pp. 104-112, 2020. (in Indonesian).

Refbacks

  • There are currently no refbacks.