Effect of Alkaline Treatment and Fumigation on the Mechanical Properties of Fiber Unsaturated Polyester-Cantula Composite with Compression Molding Method

Muhamad Saifuddin Salim, M. Rafidya Bintang Ramadhan, Elvira Wahyu Arum Fanani, Dody Ariawan, Eko Surojo

Abstract

This research examines the strength of the Unsaturated Polyester Resins (UPRs)-Cantala composite with the addition of filler Microcrystalline Cellulose (MCC). Composites were created with a Volume Fraction (VF) of 30% and a 45° angle. This angle variation received the same treatment as the others, including untreated, alkaline, and fumigation. The treatment time for alkali treatment was six hours, while the treatment time for fumigation was 10 hours. The strength of each angle variation was determined, as well as its treatment of tensile strength, modulus of elasticity, and Poisson ratio UPRs-Cantala composites. According to the results, the alkali treatment produced the highest tensile strength and modulus of elasticity values. The highest Poisson ratio value was discovered without treatment at a 45°. The alkaline treatment yielded the highest tensile strength and modulus of elasticity test results. The pullout fiber fracture dominated the untreated composite fracture, whereas the fiber breakage fracture dominated the alkaline treatment.

Full Text:

PDF

References

1. H. Ku, H. Wang, N. Pattarachaiyakoop, and M. Trada, “A review on the tensile properties of natural fiber reinforced polymer composites,” Compos. Part B Eng., vol. 42, no. 4, pp. 856-873, 2011.

2. R. Rahman and S. Z. F. S. Putra, Tensile properties of natural and synthetic fiber-reinforced polymer composites. Amsterdam: Elsevier Ltd, 2018.

3. E. W. A. Fanani, E. Surojo, A. R. Prabowo, and H. I. Akbar, “Recent progress in hybrid aluminum composite: Manufacturing and application,” Metals (Basel)., vol. 11, no. 12, article no. 1919, 2021.

4. P. S. Sari, S. Thomas, P. Spatenka, Z. Ghanam, and Z. Jenikova, “Effect of plasma modification of polyethylene on natural fibre composites prepared via rotational moulding,” Compos. Part B Eng., vol. 177, article no. 107344, 2019.

5. M. R. Sanjay, S. Siengchin, J. Parameswaranpillai, M. Jawaid, C. I. Pruncu, and A. Khan, “A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing and characterization,” Carbohydr. Polym., vol. 207, pp. 108-121, 2019.

6. L. Y. Mwaikambo and M. P. Ansell, “Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization,” J. Appl. Polym. Sci., vol. 84, no. 12, pp. 2222-2234, 2002.

7. Britannica, cantala, Chicago: Encyclopedia Britannica. Available in https://www.britannica.com/plant/cantala (Accessed in August 25, 2022).

8. B. Zuccarello, G. Marannano, and A. Mancino, “Optimal manufacturing and mechanical characterization of high performance biocomposites reinforced by sisal fibers,” Compos. Struct., vol. 194, pp. 575-583, 2018.

9. D. Purwanto, E., Wisnu, W., and Ariawan, “Kekuatan Tekan dan Konduktivitas Panas Komposit Semen Serbuk Aren-Cantala.,” Prosiding Seminar Nasional Sains dan Teknologi, vol. 1, pp. 21-25, 2011. (in Indonesian).

10. Y. Gao, P. romero, H. Zhang, M. Huang, and F. Lai, “Unsaturated polyester resin concrete: A review,” Constr. Build. Mater., vol. 228, article no. 116709, 2019.

11. A. Gharbi, R. B. Hassen, and S. Boufi, “Composite materials from unsaturated polyester resin and olive nuts residue: The effect of silane treatment,” Ind. Crops Prod., vol. 62, pp. 491-498, 2014.

12. B. Y. Alashwal, M. Saad Bala, A. Gupta, S. Sharma, and P. Mishra, “Improved properties of keratin-based bioplastic film blended with microcrystalline cellulose: A comparative analysis,” J. King Saud Univ. - Sci., vol. 32, no. 1, pp. 853-857, 2020.

13. L. K. Kian, M. Jawaid, H. Ariffin, and O. Y. Alothman, “Isolation and characterization of microcrystalline cellulose from roselle fibers,” Int. J. Biol. Macromol., vol. 103, pp. 931-940, 2017.

14. A. Kiziltas, D. J. Gardner, Y. Han, and H. S. Yang, “Mechanical Properties of Microcrystalline Cellulose (MCC) Filled Engineering Thermoplastic Composites,” J. Polym. Environ., vol. 22, no. 3, pp. 365-372, 2014.

15. S. Sakuri, E. Surojo, and D. Ariawan, “Thermogravimetry and interfacial characterization of alkaline treated cantala fiber/microcrystalline cellulose-composite,” Procedia Struct. Integr., vol. 27, pp. 85-92, 2020.

16. M. B. Palungan, R. Soenoko, Y. S. Irawan, and A. Purnowidodo, “The effect of fumigation toward the engagement ability of king pineapple leaf fibre (Agave Cantala Roxb) with epoxy matrix,” ARPN J. Eng. Appl. Sci., vol. 11, no. 13, pp. 8532-8537, 2016.

17. M. B. Palungan, B. Tangaran, S. Salu, and K. Tikupadang, “The Effect of Fumigation Treatment of King Pineapple Leaf Fiber (Agave Cantala Roxb) on Length of Fiber Critical Using Epoxy Matrix,” J. Phys. Conf. Ser., vol. 1464, article no. 012057, 2020.

18. M. Asim, M. Jawaid, K. Abdan, and M. R. Ishak, “Effect of Alkali and Silane Treatments on Mechanical and Fibre-matrix Bond Strength of Kenaf and Pineapple Leaf Fibres,” J. Bionic Eng., vol. 13, no. 3, pp. 426-435, 2016.

19. Z. Liu and B. Fei, Characteristics of Moso Bamboo with Chemical Pretreatment-Sustainable Degradation of Lignocellulosic Biomass - Techniques, Applications and Commercialization, Rijeka: InTech, 2013.

20. A. Lotfi, H. Li, D. V. Dao, and G. Prusty, “Natural fiber-reinforced composites: A review on material, manufacturing, and machinability,” J. Thermoplast. Compos. Mater., vol. 34, no. 2, pp. 238-284, 2021.

21. B. Santoso, “Peluang pengembangan agave sebagai sumber serat alam,” Perspektif, vol. 8, no. 2. pp. 84-95, 2009. (in Indonesian).

22. D. Ariawan, W. W. Raharjo, and Windiarto, “Pengaruh Model Anyaman 3D Serat Cantala terhadap Karakteristik Serapan Bunyi Komposit Unsaturated Polyester Resin ( UPR S ) - Cantala 3D,” Mekanika Jurnal Ilmiah Mekanika, vol. 7, no. 2, pp. 50-57, 2009. (in Indonesian).

23. G. Goud and R. N. Rao, “Effect of fibre content and alkali treatment on mechanical properties of Roystonea regia-reinforced epoxy partially biodegradable composites,” Bull. Mater. Sci., vol. 34, no. 7, pp. 1575-1581, 2011.

24. X. Li, L. G. Tabil, and S. Panigrahi, “Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review,” J. Polym. Environ., vol. 15, no. 1, pp. 25-33, 2007.

25. C. C. Ihueze, C. E. Okafor, and C. I. Okoye, “Natural fiber composite design and characterization for limit stress prediction in multiaxial stress state,” J. King Saud Univ. - Eng. Sci., vol. 27, no. 2, pp. 193-206, 2015.

26. K. Mahato, S. Goswami, and A. Ambarkar, “Morphology and mechanical properties of sisal fibre/vinyl ester composites,” Fibers Polym., vol. 15, no. 6, pp. 1310-1320, 2014.

27. M. H. Zin, K. Abdan, N. Mazlan, E. S. Zainudin, and K. E. Liew, “The effects of alkali treatment on the mechanical and chemical properties of pineapple leaf fibres (PALF) and adhesion to epoxy resin,” IOP Conf. Ser. Mater. Sci. Eng., vol. 368, article no. 012035, 2018.

28. S. H. Aziz and M. P. Ansell, “The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: Part 1 - polyester resin matrix,” Compos. Sci. Technol., vol. 64, no. 9, pp. 1219-1230, 2004.

Refbacks

  • There are currently no refbacks.