Nanofiber Semiconductor Experiment with Distance Variation Electrospinning Method to Improve DSSC Performance

Denny Widhiyanuriyawan, Zainal Arifin, Syamsul Hadi, Muhammad Rijalul Fadli

Abstract

Dye-Sensitized Solar Cell (DSSC) is a type of solar cell that uses dyes to transfer sunlight to electrical energy. DSSC construction uses a layered system (sandwich) that consisting of a working electrode and an opposing electrode, both of which are placed on conducting glass and electrolytes to allow electron cycling. This research aims to determine the effect of the distance between the tip and the rotating collector in an effort to increase the efficiency of Dye-Sensitized Solar Cell (DSSC) and examine its impact on the morphology of the ZnO nanofiber. This experiment is carried out by varying the distance between the tip to the rotating collector, which are 4 cm, 6 cm, and 8 cm. The results of this research indicates that at a distance of 8 cm it produces a small, uniform and regular ZnO nanofiber structure with Voc, Jsc, FF, and DSSC efficiency values of 0.559 V, 9.809 mA / cm2, 43.3% and 2.3%. In addition, at a distance of 8 cm it also produces the highest DSSC electrical efficiency from the other distances due to the absorbance of the dye and high electron excitation.

Full Text:

PDF

References

  1. W. Liu, H. Ma, and A. Walsh, “Advance in photonic crystal solar cells,” Renew. Sustain. Energy Rev., vol. 116, no. October, p. 109436, 2019, doi: 10.1016/j.rser.2019.109436.
  2. S. D. Prasetyo, A. R. Prabowo, and Z. Arifin, “The effect of collector design in increasing PVT performance: Current state and milestone,” Mater. Today Proc., no. xxxx, 2022, doi: 10.1016/j.matpr.2021.12.356.
  3. K. Petridis, “An Introduction to Organic Photo-Voltaic ( OPVs ) An Introduction to Organic Photo-Voltaic ( OPVs ),” elbysier, no. April, 2016.
  4. Z. Arifin, S. Hadi, H. N. Jati, S. D. Prasetyo, and Suyitno, “Effect of electrospinning distance to fabricate ZnO nanofiber as photoanode of dye-sensitized solar cells,” AIP Conf. Proc., vol. 2217, no. April, 2020, doi: 10.1063/5.0000705.
  5. T. Ponken, S. Kongsankham, S. Panya, W. Choawunklang, and P. Ardchongthong, “Effect of Titanium Dioxide (TiO2) Light Scattering Layer deposited by Spray Deposition Method at Room Temperature for Dye-sensitized Solar Cell (DSSC),” Mater. Today Proc., vol. 17, pp. 1249–1258, 2019, doi: 10.1016/j.matpr.2019.06.013.
  6. M. K. Nazeeruddin, E. Baranoff, and M. Grätzel, “Dye-sensitized solar cells: A brief overview,” Sol. Energy, vol. 85, no. 6, pp. 1172–1178, 2011, doi: 10.1016/j.solener.2011.01.018.
  7. K. K. Tehare, S. T. Navale, F. J. Stadler, Z. He, and H. Yang, “Enhanced DSSCs performance of TiO 2 nanostructure by surface passivation layers,” Mater. Res. Bull., vol. 99, no. November 2017, pp. 491–495, 2018, doi: 10.1016/j.materresbull.2017.11.046.
  8. B. Boro, B. Gogoi, B. M. Rajbongshi, and A. Ramchiary, “Nano-structured TiO2/ZnO nanocomposite for dye-sensitized solar cells application: A review,” Renew. Sustain. Energy Rev., vol. 81, no. May 2017, pp. 2264–2270, 2018, doi: 10.1016/j.rser.2017.06.035.
  9. S. Suhaimi, M. M. Shahimin, Z. A. Alahmed, J. Chyský, and A. H. Reshak, “Materials for enhanced dye-sensitized solar cell performance: Electrochemical application,” Int. J. Electrochem. Sci., vol. 10, no. 4, pp. 2859–2871, 2015.
  10. T. Wahyudi and D. Sugiyana, “PEMBUATAN SERAT NANO MENGGUNAKAN METODE ELECTROSPINNING,” Arena Tekst., vol. 26, no. 1, pp. 29–34, 2011, doi: 10.31266/at.v26i1.1439.
  11. S. Yun and S. Lim, “Effect of Al-doping on the structure and optical properties of electrospun zinc oxide nanofiber films,” J. Colloid Interface Sci., vol. 360, no. 2, pp. 430–439, 2011, doi: 10.1016/j.jcis.2011.05.022.
  12. A. El Ruby Mohamed and S. Rohani, “Modified TiO2 nanotube arrays (TNTAs): Progressive strategies towards visible light responsive photoanode, a review,” Energy Environ. Sci., vol. 4, no. 4, pp. 1065–1086, 2011, doi: 10.1039/c0ee00488j.
  13. B. D. Li and Y. Xia, “Electrospinning of Nanofibers : Reinventing the Wheel ?**,” no. 14, pp. 1151–1170, 2004, doi: 10.1002/adma.200400719.
  14. S. Suyitno et al., “Fabrication and characterization of zinc oxide-based electrospun nanofibers for mechanical energy harvesting,” J. Nanotechnol. Eng. Med., vol. 5, no. 1, pp. 1–6, 2014, doi: 10.1115/1.4027447.
  15. Z. ARIFIN, S. HADI, S. SUYITNO, A. R. PRABOWO, and S. D. PRASETYO, “Characterization of zno nanofiber on double-layer dye-sensitized solar cells using direct deposition method,” Period. Tche Quim., vol. 17, no. 36, pp. 263–277, 2020.
  16. H. N. Jati, M. Z. Khusaini, and H. Sutanto, “Application of direct deposition method for dye-sensitized solar cell manufacturing process Application of Direct Deposition Method for Dye-Sensitized Solar Cell Manufacturing Process,” AIP Conf. Proc., vol. 030022, no. April, pp. 1–6, 2019.
  17. B. Sutanto, Z. Arifin, S. Hadi, and L. Muliani, “Enhancement ZnO Nanofiber as Semiconductor for Dye- Sensitized Solar Cells by Using Al Doped,” vol. 040006, 2016, doi: 10.1063/1.4943449.
  18. L. L. Tobin, T. O’Reilly, D. Zerulla, and J. T. Sheridan, “Characterising dye-sensitised solar cells,” Optik (Stuttg)., vol. 122, no. 14, pp. 1225–1230, 2011, doi: 10.1016/j.ijleo.2010.07.028.
  19. K. Sharma, V. Sharma, and S. S. Sharma, “Dye-Sensitized Solar Cells : Fundamentals and Current Status,” nanoscale Res. Lett., vol. 6, 2018.

Refbacks

  • There are currently no refbacks.