Design Analysis and Structural Prediction of Bus Driver Chair Support: A Study Case using HOQ and FEM

Joung Hyung Cho, Ridwan Ridwan, Rama Panji Kusuma, Joko Triyono, Nurul Muhayat, Aprianur Fajri, Fajar Budi Laksono

Abstract

The bus driver's comfort is crucial. The location of the driver's seat, which is correlated with the seat support design, is one of the elements supporting his comfort. The bus business chosen as a representative is PT Selamet Trans Abadi, which has its headquarters in Pati City, Central Java. By considering the Safety Factor, House of Quality (HOQ), weight, shape, and seat support dimensions, this study intends to ascertain how the characteristics of the bus seat support form after receiving a load or force. Conducting a field visit to gather the necessary data is the initial step in this research. The following stage is to decide on the design criteria based on the collected data. Next, use Solidwork to model the design. Using the Finite Element Method (FEM), this program can investigate design characteristics. The loading simulation under consideration includes clutch engagement, bus brake application, and clutch engagement, whether the support is static or stationary. The validation with two supporting journals is then run as the following step to validate the findings. The constant chair support fulfills the typical value, according to the study's findings, whereas support 1 is the most fracture-prone. The outcomes of supports 2 and 3 demonstrate that the support strength is weak since it is subjected to an unequal load.

Full Text:

PDF

References

1. BPS-Indonesia, Land Transportation Statistic 2020, 1st ed. Jakarta: BPS Indonesia, 2020.

2. A. Jusuf, I. P. Nurprasetio, and A. Prihutama, “Macro data analysis of traffic accidents in Indonesia,” J. Eng. Technol. Sci., vol. 49, no. 1, pp. 133–144, 2017.

3. I. N. Satrio Wicaksono, M. Rizka Faisal Rahman, Sandro Mihradi, “Finite element Analysis of Bus Rollover Test in Accordance with UN ECE R66 Standard,” J. Eng. Technol. Sci., vol. 49, no. 6, pp. 799–810, 2017.

4. W. Widiasih and H. Murnawan, “Penyusunan Konsep untuk Perancangan Produk Pot Portable dengan Pendekatan Quality Function Deployment (QFD),” Tek. Ind., vol. 3, no. 1, pp. 76–85, 2016.

5. L. Wang, Y. Wang, L. Shi, and H. Xu, “Analysis of risky driving behaviors among bus drivers in China: The role of enterprise management, external environment and attitudes towards traffic safety,” Accid. Anal. Prev., vol. 168, no. 26, p. 106589, 2022.

6. A. T. James, D. Vaidya, M. Sodawala, and S. Verma, “Selection of bus chassis for large fleet operators in India: An AHP-TOPSIS approach,” Expert Syst. Appl., vol. 186, no. April, p. 115760, 2021.

7. E. Suhendar and Suroto, “Penerapan Metode Quality Function Deployment (QFD) Dalam Upaya Peningkatan Kualitas Pelayanan Akademik Pada UB,” Fakt. Exacta, vol. 7, no. 4, pp. 372–386, 2014.

8. A. Agustina and I. Maulana, “Rancang Ulang Kursi Taman dengan Evaluasi Ergonomi Antropometri dan Biomekanik,” Simp. Nas. RAPI XII, pp. 8–15, 2013.

9. Z. Arifin, D. D. D. P. Tjahjana, R. A. Rachmanto, S. Suyitno, S. D. Prasetyo, and T. Trismawati, “Redesign Mata Bor Tanah Untuk Pembuatan Lubang Biopori Di Desa Puron, Kecamatan Bulu, Kabupaten Sukoharjo,” Mek. Maj. Ilm. Mek., vol. 19, no. 2, p. 60, 2020.

10. Z. Arifin, S. D. Prasetyo, S. Suyitno, D. D. D. P. Tjahjana, R. A. Rachmanto, W. E. Juwana, C. H. B. Apribowo, and T. Trismawati, “Rancang Bangun Alat Elliptical trainer Outdoor,” Mek. Maj. Ilm. Mek., vol. 19, no. 2, p. 104, 2020.

11. Z. Arifin, S. D. Prasetyo, T. Triyono, C. Harsito, and E. Yuniastuti, “Rancang Bangun Mesin Pencacah Limbah Kotoran Sapi,” J. Rekayasa Mesin, vol. 11, no. 2, pp. 187–197, 2020.

12. Z. Arifin, S. D. Prasetyo, U. Ubaidillah, S. Suyitno, D. D. D. P. Tjahjana, W. E. Juwana, R. A. Rachmanto, and A. R. Prabowo, “Helmet Stick Design for BC3 Paramlympic Bocia Games,” Math. Model. Eng. Probl., vol. 9, no. 3, pp. 637–644, 2022.

13. S. Dahlan and R. A. N. Al Hakim, “Optimasi Desain Kursi Menggunakan Metode Elemen Hingga,” ROTASI, vol. 20, no. 3, p. 160, 2018.

14. A. Kerebih Jembere, V. Paramasivam, S. Tilahun, and S. K. Selvaraj, “Stress analysis of different cross-section for passenger truck chassis with a material of ASTM A148 Gr 80-50,” Mater. Today Proc., vol. 46, pp. 7304–7316, 2021.

15. S. Nandhakumar, S. Seenivasan, A. M. Saalih, and M. Saifudheen, “Weight optimization and structural analysis of an electric bus chassis frame,” Mater. Today Proc., vol. 37, no. Part 2, pp. 1824–1827, 2020.

16. R. Lopes, B. V. Farahani, F. Q. de Melo, N. V. Ramos, and P. M. G. P. Moreira, “A numerical dynamic analysis of a multi-body bus,” Procedia Struct. Integr., vol. 37, no. C, pp. 81–88, 2021.

17. A. Sedmak, “Computational fracture mechanics: An overview from early efforts to recent achievements,” Fatigue Fract. Eng. Mater. Struct., vol. 41, no. 12, pp. 2438–2474, 2018.

18. T. Widodo, I. Fardiansyah, and A. Gufron, “Mendesain Meja Dan Kursi Ergonomi Dengan Mengacu Pada Nilai Antropometri Untuk Bagian Checking Rubber (Outsole) Di {PT}. Victory Chingluh Indonesia,” J. Ind. Manuf., vol. 6, no. 2, p. 123, 2021.

19. S. Dewangan, N. Mainwal, M. Khandelwal, and P. S. Jadhav, “Performance analysis of heat treated AISI 1020 steel samples on the basis of various destructive mechanical testing and microstructural behaviour,” Aust. J. Mech. Eng., vol. 20, no. 1, pp. 74–87, 2022.

20. A. Fajri, A. Rio, E. Surojo, and F. Imaduddin, “Validation and Verification of Fatigue Assessment using FE Analysis : A Study Case on the Notched Cantilever Beam,” in IGF26 - 26th International Conference on Fracture and Structural Integrity Validation, 2021.

Refbacks

  • There are currently no refbacks.