The potential of biodegradable polymers: Chitosan, polyethylene glycol, and polycaprolactone as materials for progesterone intravaginal devices
Abstract
For several decades, a protocol based on the use of progestagens has been used to manage livestock reproduction with minimal alterations. Recently, researchers have gained insight into the short-term use of progestagen protocols lasting 5-7 days, which has been found to reduce the incidence of vaginitis and obviate the use of antibiotics. Additionally, this approach enables the reutilization of silicone-based devices such as CIDRs after a thorough biosecurity assessment. However, these devices have certain limitations. At the end of the treatment, they must be disposed of and cannot be reused, necessitating a re-evaluation of their use for technical and societal reasons, including animal health and welfare, food safety, and environmental impact.A chitosan-PEG intravaginal implant formulation released progesterone for a period of four days, corresponding to the degradation time of the implant in the vagina. The use of a simple melting and molding process for the combination of PCL-PEG-chitosan implants has been observed to result in degradation of both simulated vaginal fluid and vaginal tissue of cows. The development of intravaginal devices made from biodegradable polymers is considered a potential solution because these materials would degrade within the body, eliminating the need for removal and leaving no residue. These devices are safe for animals and the environment.
Keywords
Full Text:
PDFReferences
- Pérez-Clariget, R., Á. López-Pérez, and R. Ungerfeld. 2021. Treatments with intravaginal sponges for estrous synchronization in ewes: length of the treatment, amount of medroxyprogesterone, and administration of a long-acting progesterone. Trop. Anim. Health Prod. 53:1–7. Doi: 10.1007/s11250-021-02798-w
- Epperson, K. M., J. J. J. Rich, S. M. Zoca, E. J. Northrop, S. D. Perkins, J. A. Walker, G. A. Perry. 2020. Effect of progesterone supplementation in a resynchronization protocol on follicular dynamics and pregnancy success. Theriogenology. 157:121–129. Doi: 10.1016/j.theriogenology-.2020.07.011
- Dhami, A. J., B. B. Nakrani, K. K. Hadiya, J. A. Patel, and R. G. Shah. 2015. Comparative efficacy of different estrus synchronization protocols on estrus induction response, fertility and plasma progesterone and biochemical profile in crossbred anestrus cows. Vet. World. 8:1310–1316. Doi: 10.14202/vetworld.2015.1310-1316
- Santos, J. E. P., C. D. Narciso, F. Rivera, W. W. Thatcher, and R. C. Chebel. 2010. Effect of reducing the period of follicle dominance in a timed artificial insemination protocol on reproduction of dairy cows. J. Dairy Sci. 93:2976–2988. Doi: 10.3168/jds.2009-2870
- Pandey, N. K. J., H. P. Gupta, S. Prasad, and S. K. Sheetal. 2016. Plasma progesterone profile and conception rate following exogenous supplementation of gonadotropin-releasing hormone, human chorionic gonadotropin, and progesterone releasing intra-vaginal device in repeat-breeder crossbred cows. Vet. World. 9:559–562. Doi: 10.14202/vetworld.2016.559-562
- Casper, R. F., and E. H. Yanushpolsky. 2016. Optimal endometrial preparation for frozen embryo transfer cycles: Window of implantation and progesterone support. Fertil. Steril. 105:867–872. Doi: 10.1016/-j.fertnstert.2016.01.006
- Roseman, T. J. 1972. Release of steroids from a silicone polymer. J. Pharm. Sci. 61:46–50. Doi:10.1002/jps.2600610106
- Silva, L. O. e., A. Valenza, R. L. O. R. Alves, M. A. da Silva, T. J. B. da Silva, J. C. L. Motta, J. N. Drum, G. Madureira, A. H. de Souza, and R. Sartori. 2021. Progesterone release profile and follicular development in Holstein cows receiving intravaginal progesterone devices. Theriogenology. 172:207–215. Doi: 10.1016/j.theriogenology-.2021.07.001
- Helbling, I. M., F. Karp, A. Cappadoro, and J. A. Luna. 2020. Design and evaluation of a recyclable intravaginal device made of ethylene vinyl acetate copolymer for bovine estrus synchronization. Drug Deliv. Transl. Res. 10:1255–1266. Doi: 10.1007-/s13346-020-00717-4
- Rathbone, M., C. R. Bunt, C. R. Ogle, S. Burggraaf, K. L. Macmillan, C. R. Burke, and K. L. Pickering. 2002. Reengineering of a commercially available bovine intravaginal insert (CIDR insert) containing progesterone. J. Control. Release. 85:105–115. Doi: 10.1016/S0168-3659(02)00288-2
- Samir, A., F. H. Ashour, A. A. A. Hakim, and M. Bassyouni. 2022. Recent advances in biodegradable polymers for sustainable applications. npj Mater. Degrad. Springer US. Doi: 10.1038/s41529-022-00277-7
- Tian, W., M. Mahmoudi, T. Lhermusier, S. Kiramijyan, F. Chen, R. Torguson, W. O. Suddath, L. F. Satler, A. D. Pichard, and R. Waksman. 2016. The influence of advancing age on implantation of drug-eluting stents. Catheter. Cardiovasc. Interv. 88:516–521. Doi: 10.1002/ccd.26333
- Gavasane, A. J. and H. A. Pawar. 2014. Synthetic biodegradable polymers used in controlled drug delivery System: An overview. Clin. Pharmacol. Biopharm. 3:121. Doi: 10.4172/2167-065x.1000121.
- Hassan, A. S., G. M. Soliman, M. F. Ali, M. M. El-Mahdy, and G. E. D. A. El-Gindy. 2018. Mucoadhesive tablets for the vaginal delivery of progesterone: in vitro evaluation and pharmacokinetics/ pharmacodynamics in female rabbits. Drug Dev. Ind. Pharm. 44:224–232. Doi: 10.1080/03639045.2017.1386203
- Fu, J., X. Yu, and Y. Jin. 2018. 3D printing of vaginal rings with personalized shapes for controlled release of progesterone. Int. J. Pharm. 539:75–82. Doi: 10.1016/j.ijpharm.-2018.01.036.
- Rathbone, M., C. R. Bunt, C. R. Ogle, S. Burggraaf, K. L. Macmillan, and K. Pickering. 2002. Development of an injection molded poly(ε-caprolactone) intravaginal insert for the delivery of progesterone to cattle. J. Control. Release 85:61–71. Doi: 10.1016/S0168-3659(02)00272-9
- CA2311311C patent biodegradale intravaginal.pdf. (n.d.).
- Park, Y. J., J. H. Cha, S. I. Bang, and S. Y. Kim. 2019. Clinical application of three-dimensionally printed biomaterial polycaprolactone (PCL) in augmentation rhinoplasty. Aesthetic Plast. Surg. 43:437–446. Doi: 10.1007/s00266-018-1280-1
- Yessa, E. Y., L. I. Tumbelaka, I. Wientarsih, M. F. Ulum, B. Purwantara, and A. Amrozi. 2023. In vitro, in compost, and in vivo assessment of chitosan-polyethylene glycol as an intravaginal insert for progesterone delivery in sheep. Trop. Anim. Sci. J. 46:295–305. Doi: 10.5398/tasj.2023.46.3.295
- Yessa, E. Y., I. Wientarsih, B. Purwantara, A. Amrozi, and M. F. Ulum. 2023. Bioavailability properties of intravaginal implants made from chitosan-PEG-PCL in simulated vaginal fluid and vagina of cattle. ARSHI Vet. Lett. 7:57–58. Doi: 10.-29244/avl.7.3.57-58
- Szymanska, E., K. Winnicka, A. Amelian, and U. Cwalina. 2014. Vaginal chitosan tablets with clotrimazole-design and evaluation of mucoadhesive properties using porcine vaginal mucosa, mucin and gelatine. Chem. Pharm. Bull. 62:160–167. Doi: 10.1248/cpb.c13-00689
- Matica, M. A., F. L. Aachmann, A. Tøndervik, H. Sletta, and V. Ostafe. 2019. Chitosan as a wound dressing starting material: Antimicrobial properties and mode of action. Int. J. Mol. Sci. 20:1–34. Doi: 10.3390/ijms20235889
- Imran, M., M. Sajwan, B. Alsuwayt, and M. Asif. 2019. Synthesis, characterization and anticoagulant activity of chitosan derivatives. Saudi Pharm. J. Doi: 10.1016/j.jsps.2019.11.003
- Lavanya, K., S. V. Chandran, K. Balagangadharan, and N. Selvamurugan. 2020. Temperature and pH-responsive chitosan-based injectable hydrogels for bone tissue engineering. Mater. Sci. Eng. C 111:110862. Doi: 10.1016/j.msec.2020.110862
- Yang, Y., H. Wu, Q. Fu, X. Xie, Y. Song, M. Xu, and J. Li. 2022. 3D-printed polycaprolactone-chitosan based drug delivery implants for personalized administration. Mater. Des. 214:110394. Doi: 10.1016/j.matdes.2022.110394
- Wang, W., C. Xue, and X. Mao. 2020. Structural modi fi cation, biological activity, and application. Int. J. Biol. Macromol. 164:4532–4546. Doi: 10.1016/j.ijbiomac.2020.-09.042
- Sikorski, D., K. Gzyra-Jagieła, and Z. Draczyński. 2021. The kinetics of chitosan degradation in organic acid solutions. Mar. Drugs. 19:1–16. Doi: 10.3390/md19050236
- Kassem, M. A. A., A. N. ElMeshad, and A. R. Fares. 2015. Lyophilized sustained release mucoadhesive chitosan sponges for buccal buspirone hydrochloride delivery: Formulation and in vitro evaluation. AAPS Pharm. Sci. Tech. 16:537–547. Doi: 10.1208/-s12249-014-0243-3
- Dehghan, M. H. G., and M. Kazi. 2014. Lyophilized chitosan/xanthan polyelectrolyte complex based mucoadhesive inserts for nasal delivery of promethazine hydrochloride. Iran. J. Pharm. Res. 13:769–784.
- Franca, J. R., G. Foureaux, L. L. Fuscaldi, T. G. Ribeiro, L. B. Rodrigues, R. Bravo, R. O. Castilho, M. I. Yoshida, V. N. Cardoso, S. O. Fernandes, S. Cronemberger, A. J. Ferreira, and A. A. G. Faraco. 2014. Bimatoprost-loaded ocular inserts as sustained release drug delivery systems for glaucoma treatment: In Vitro and in Vivo evaluation. PLoS One 9:1–11. Doi: 10.1371/journal.pone.0095461
- dos Santos Ramos, M. A., P. B. Da Silva, L. G. De Toledo, F. B. Oda, I. C. da Silva, L. C. dos Santos, A. G. dos Santos, M. T. G. de Almeida, F. R. Pavan, M. Chorilli, and T. M. Bauab. 2019. Intravaginal delivery of syngonanthus nitens (Bong.) Ruhland fraction based on a nanoemulsion system applied to vulvovaginal candidiasis treatment. J. Biomed. Nanotechnol. 15:1072–1089. Doi: 10.1166/jbn.2019.2750
- Souza, M. P. C. de, R. M. Sábio, T. de C. Ribeiro, A. M. dos Santos, A. B. Meneguin, and M. Chorilli. 2020. Highlighting the impact of chitosan on the development of gastroretentive drug delivery systems.Int. J. Biol. Macromol. 159:804–822. Doi: 10.1016/j.ijbiomac.2020.05.104
- Brannigan, R. P. and V. V Khutoryanskiy. 2019. Progress and current trends in the synthesis of novel polymers with enhanced mucoadhesive properties. Macromol. Biosci. 1900194:1–11. Doi: 10.1002/mabi.-201900194
- Kean, T. and M. Thanou. 2010. Biodegradation, biodistribution and toxicity of chitosan. Adv. Drug Deliv. Rev. 62:3–11. Doi: 10.1016/j.addr.2009.09.004
- Chin, A., G. Suarato, and Y. Meng. 2014. Evaluation of physicochemical characteristics of hydrophobically modified glycol chitosan nanoparticles and their biocompatibility in murine osteosar- coma and osteoblast-like ce. J. Nanotech. Smart Mater. 1:1-7. Doi: 10.17303/jnsm.2014.e104
- Szymańska, E., and K. Winnicka. 2015. Stability of chitosan - A challenge for pharmaceutical and biomedical applications. Mar. Drugs. 13(4):1819-1846. Doi: 10.3390/md13041819
- Thakhiew, W., M. Champahom, S. Devahastin, and S. Soponronnarit. 2015. Improvement of mechanical properties of chitosan-based films via physical treatment of film-forming solution. J. Food Eng. 158:66–72. Doi: 10.1016/j.jfoodeng.2015.02.027
- Islam, N., I. Dmour, and M. O. Taha. 2019. Degradability of chitosan micro/nanoparticles for pulmonary drug delivery. Heliyon 5:e01684. Doi: 10.1016/j.heliyon.2019.e01684
- Thomas, A., S. S. Müller, and H. Frey. 2014. Beyond poly (ethylene glycol): Linear polyglycerol as a multifunctional polyether for biomedical and pharmaceutical applications. Biomacromol. 15:1935–1954. Doi: 10.1021/bm5002608
- Xiao, X. F., X. Q. Jiang, and L. J. Zhou. 2013. Surface modification of poly ethylene glycol to resist nonspecific adsorption of proteins. Fenxi Huaxue/ Chinese J. Anal. Chem. 41:445–453. Doi: 10.1016/S1872-2040(13)60638-6
- D’souza, A. A. and R. Shegokar. 2016. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opin. Drug Deliv. 13:1257–1275. Doi: 10.1080/17425247.2016.1182485
- Leyva-Gómez, G., E. Piñón-Segundo, N. Mendoza-Muñoz, M. L. Zambrano-Zaragoza, S. Mendoza-Elvira, and D. Quintanar-Guerrero. 2018. Approaches in polymeric nanoparticles for vaginal drug delivery: A review of the state of the art. Int. J. Mol. Sci. 19:1–19. Doi: 10.3390/ijms-19061549
- Kowalczyk, P., R. Podgórski, M. Wojasiński, G. Gut, W. Bojar, and T. Ciach. 2021. Chitosan-human bone composite granulates for guided bone regeneration. Int. J. Mol. Sci. 22:1–14. Doi: 10.3390/ijms22052324
- Peng, L., L. Chang, M. Si, J. Lin, Y. Wei, S. Wang, H. Liu, B. Han, and L. Jiang. 2020. Hydrogel-coated dental device with adhesion-inhibiting and colony-suppressing properties. ACS Appl. Mater. Interfaces. 12:9718–9725. Doi: 10.1021/acsami.9b19873
- Kawai, F. 2010. The biochemistry and molecular biology of xenobiotic polymer degradation by Microorganisms. Biosci. Biotechnol. Biochem. 74:1743–1759. Doi: 10.1271/bbb.100394
- Obradors, N. and J. Aguilar. 2015. Efficient biodegradation of high-molecular- weight polyethylene glycols by pure cultures of Pseudomonas stutzeri efficient biodegradation of high-molecular-weight polyethylene glycols by pure cultures of Pseudomonas stutzeri. Appl. Environ. Microbiol. 57:2383–2388.
- Takeuchi, M., F. Kawai, Y. Shimada, and A. Yokota. 1993. Taxonomic study of polyethylene glycol-utilizing bacteria: emended description of the genus sphingomonas and new descriptions of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov. and Sphingomonas terrae sp. nov. Syst. Appl. Microbiol. 16:227–238. Doi: 10.1016/S0723-2020(11)80473-X
- Kawai, F. and M. Takeuchi. 1996. Taxonomical position of newly isolated polyethylene glycol-utilizing bacteria. J. Ferment. Bioeng. 82:492–494. Doi: 10.1016/S0922-338X(97)86989-9
- Kawai, F. and H. Yamanaka. 1989. Inducible or constitutive polyethylene glycol dehydrogenase involved in the aerobic metabolism of polyethylene glycol. J. Ferment. Bioeng. 67:300–302. Doi: 10.1016/0922-338X(89)90236-5
- Houshyar, S., G. S. Kumar, A. Rifai, N. Tran, R. Nayak, R. A. Shanks, R. Padhye, K. Fox, and A. Bhattacharyya. 2019. Nanodiamond/ poly-ε-caprolactone nanofibrous scaffold for wound management. Mater. Sci. Eng. 100:378–387. Doi: 10.1016/j.msec.2019.02.110
- Haryńska, A., J. Kucinska-Lipka, A. Sulowska, I. Gubanska, M. Kostrzewa, and H. Janik. 2019. Medical-grade PCL based polyurethane system for FDM 3D printing-characterization and fabrication. Materials (Basel). 12:887. Doi: 10.3390/ma12060887
- Adithya, S. P., D. S. Sidharthan, R. Abhinandan, K. Balagangadharan, and N. Selvamurugan. 2020. Nanosheets-incorporated bio-composites containing natural and synthetic polymers / ceramics for bone tissue engineering. Int. J. Biol. Macromol. 164:1960–1972. Doi: 10.1016/j.ijbiomac.2020.08.053
- Lan, S. F., T. Kehinde, X. Zhang, S. Khajotia, D. W. Schmidtke, and B. Starly. 2013. Controlled release of metronidazole from composite poly-ε- caprolactone/ alginate (PCL/alginate) rings for dental implants. Dent. Mater. 29:656–665. Doi: 10.1016/j.dental.2013.03.014
- Mahoney, C., D. Conklin, J. Waterman, J. Sankar, and N. Bhattarai. 2016. Electrospun nanofibers of poly(ε-caprolactone)/ depolymerized chitosan for respiratory tissue engineering applications. J. Biomater. Sci. Polym. Ed. 27:611–625. Doi: 10.1080/09205063.2016.1144454
- Stefaniak, K., and A. Masek. 2021. Green copolymers based on poly (lactic acid)— short review. Materials (Basel). 14:5254. Doi: 10.3390/ma14185254
- Łysik, D., P. Deptuła, S. Chmielewska, R. Bucki, and J. Mystkowska. 2022. Degradation of polylactide and polycaprolactone as a result of biofilm formation assessed under experimental conditions simulating the oral cavity environment. Materials (Basel). 15:7061. Doi: 10.3390/ma15207061
- Leja, K. and G. Lewandowicz. 2010. Polymer biodegradation and biodegradable polymers - A review. Polish J. Environ. Stud. 19:255–266.
- Woodruff, M. A. and D. W. Hutmacher. 2010. The return of a forgotten polymer - Polycaprolactone in the 21st century. Prog. Polym. Sci. 35:1217–1256. Doi: 10.1016/-j.progpolymsci.2010.04.002
- Uhrich, K. E., S. M. Cannizzaro, R. S. Langer, and K. M. Shakesheff. 2010. Polymeric systems for controlled drug release. Chem. Inform. 99:3181–3198. Doi: 10.1002/chin.200003275
- Saghazadeh, S., C. Rinoldi, M. Schot, S. S. Kashaf, F. Sharifi, E. Jalilian, K. Nuutila, G. Giatsidis, P. Mostafalu, H. Derakhsh-andeh, K.Yue, W. Swieszkoski, A. Memic, A. Tamayol, A. Khademhosseini. 2018. Drug delivery systems and materials for wound healing applications. Adv. Drug Deliv. Rev. 127:138–166. Doi: 10.1016/j.addr.2018.04.008
- Hamra, A. H., Y. G. Massri, J. M. Marcek, and J. E. Wheaton. 1986. Plasma progesterone levels in ewes treated with progesterone-controlled internal drug-release dispensers, implants and sponges. Anim. Reprod. Sci. 11:187–194. Doi: 10.1016/0378-4320(86)90120-X
- Dos Santos Neto, P., C. García-Pintos, and A. Pinczak. 2015. Fertility obtained with different progestogen intravaginal devices using Short-term protocol for fixed-time artificial insemination (FTAI) in sheep. Livest. Sci. 182. Doi: 10.1016/j.livsci.-2015.11.005
- Martinez-Ros, P., M. Lozano, F. Hernandez, A. Tirado, A. Rios-Abellan, M. C. López-Mendoza, and A. Gonzalez-Bulnes. 2018. Intravaginal device-type and treatment-length for ovine estrus synchronization modify vaginal mucus and microbiota and affect fertility. Anim. 8:1–8. Doi: 10.3390/ani8120226
- Bragança, J. F. M., J. M. Maciel, L. K. Girardini, S. A. Machado, J. F. X. da Rocha, A. A. Tonin, and R. X. da Rocha. 2017. Influence of a device intravaginal to synchronization/induction of estrus and its reuse in sheep vaginal flora. Comp. Clin. Path. 26:1369–1373. Doi: 10.1007/s00580-017-2542-z
- Wheaton, J. E., K. M. Carlson, H. F. Windels, and L. J. Johnston. 1993. CIDR: A new progesterone-releasing intravaginal device for induction of estrus and cycle control in sheep and goats. Anim. Reprod. Sci. 33:127–141. Doi: 10.1016/0378-4320(93)-90111-4.
- Ke, W., X. Li, M. Miao, B. Liu, X. Zhang, and T. Liu. 2021. Fabrication and properties of electrospun and electrosprayed polyethylene glycol/polylactic acid (Peg/pla) films. Coatings. 11:790. Doi: 10.3390/coatings11070790
- Naghizadeh, Z., A. Karkhaneh, and A. Khojasteh. 2018. Self-crosslinking effect of chitosan and gelatin on alginate based hydrogels: Injectable in situ forming scaffolds. Mater. Sci. Eng. C. 89:256–264. Doi: 10.1016/j.msec.2018.04.018.
- Alex, A. T., A. Joseph, G. Shavi, J. V. Rao, and N. Udupa. 2016. Development and evaluation of carboplatin-loaded PCL nanoparticles for intranasal delivery. Drug Deliv. 23:2144–2153. Doi: 10.3109/1071-7544.2014.948643
- Karamzadeh, Y., A. A. Asl, and S. Rahmani. 2020. PCL microsphere / PEG-based composite hydrogels for sustained release of methadone hydrochloride. J. Appl. Polymer. Sci. 48967:1–11. Doi: 10.-1002/app.48967
- Fuse, M., T. Hayakawa, T. Hashizume-Takizawa, R. Takeuchi, T. Kurita-Ochiai, J. Fujita-Yoshigaki, and M. Fukumoto. 2015. MC3T3-e1 cell assay on collagen or fibronectin immobilized poly (Lactic acid-ɛ-caprolactone) film. J. Hard Tissue Biol. 24:249–256. Doi: 10.2485/jhtb-.24.249
- Xu, R., M. B. Taskin, M. Rubert, D. Seliktar, F. Besenbacher, and M. Chen. 2015. HiPS-MSCs differentiation towards fibroblasts on a 3D ECM mimicking scaffold. Sci. Rep. 5:1–7. Doi: 10.1038/srep08480
Refbacks
- There are currently no refbacks.