Genetic characterization and lineage analysis of Pasundan (Rancah) cattle in West Java, Indonesia: Insights from ZFY gene sequencing

Johar Arifin, Widya Pintaka Bayu Putra, Syahruddin Said, Thobela Louis Tyasi


Objective: This study was carried out to characterize Pasundan (Rancah) cattle from West Java of Indonesia based on a partial Zinc Finger Y-linked (ZFY) gene sequence.

Methods: Total of fourteen (14) DNA samples of unrelated Pasundan bulls at the breeding station (BPPIBT-SP Ciamis, West Java) were used for sequencing analysis. The blood samples were collected from jugular vein of each bull for the DNA extraction analysis. Along 979 bp of ZFY gene was amplified using primer pairs of forward: 5’- GGT GAG GGC ACA TGA GTT C -3’and reverse:  5’- CTC TGC AGG TGG TTG TGT AA -3’. Therefore, a forward sequencing method was performed in the present study to obtain the ZFY gene sequences. Along 714 bp of bovine ZFY gene sequences were used for determining the Neighbor-Joining (NJ) tree for Pasundan bulls with 1000 × bootstrap replications using a MEGA computer program. The genetic diversity parameters of haplotype diversity (Hd), nucleotide diversity (pi), Tajima’s D test and Fu’s Fs statistics were calculated using a DNAsp computer program.

Results: Total of fourteen (14) haplotypes of ZFY gene and seventy (70) mutation sites were detected in the Pasundan bulls. The haplotype diversity (Hd) and nucleotide diversity (pi) in Pasundan’s ZFY gene diversity were 1.00 (high) and 0.01 (low), respectively. The neutrality test of Tajima’s D and Fu’s Fs statistic values were -1.42 and -6.47, respectively. Bovine ZFY gene can be classified into two clades of ZFY-1 and ZFY-2. Therefore, the Neighbor-joining (NJ) tree (1000×bootstrap) revealed that the Pasundan cattle are classified into clade ZFY-1 together with Bos taurus (AF241273, AF465179). Meanwhile, a clade ZFY-2 consisted of Bos taurus (AF465181, DQ336536), Bos indicus (DQ336537), and Bos javanicus (DQ336578).

Conclusion: The ZFY gene of Pasundan bulls were polymorphic with seventy mutation sites. Therefore, Pasundan bulls were characterized into ZFY-1 clade or Taurine lineage based on ZFY gene sequence variaton. The crossbreeding program with Bos taurus straw to increase meat production of cattle may affecting the genetic structure of Pasundan bulls since this program is widely applied in West Java through many years ago.


Pasundan bulls; Sequencing; West Java; ZFY gene

Full Text:



  1. Said, S., W. P. B. Putra, P. P. Agung, and H. Yuhani. 2017. Phenotypic, morphometric characterization and population structure of Pasundan cattle at West Java, Indonesia. Biodiversitas. 18:1638-1645. Doi: 10.13057/-biodiv/d180444
  2. Iqbal, M., D. Rahmat, and N. Hilmia. 2017. Evaluation of estimated body weight based on Winter formula and actual body weight deviation of Pasundan cattle. e-Jurnal Mahasiswa. 16:1. [cited Feb 23, 2023]. Available from:
  3. Hilmia, N., D. Rahmat, P. Edianingsih, and Y. Faisal. 2022. Comparison of slaughter weight, carcass weight and carcass percentage of Rancah and Ongole grade cattle based on mutations in Leptin gene. Zira’ah. 47:137-141.
  4. Hartatik, T., D. N. H. Hariyono, and Y. Adinata. 2019. Genetic diversity and phylogenetic analysis of two Indonesian local cattle breeds based on Cytochrome b gene sequences. Biodiversitas. 20:17-22. Doi: 10.13057/biodiv/d200103
  5. Salimah, I., P. P. Agung, S. Said, A. Farajallah, and D. Perwitasari. 2022. Origin and phylogenetic analysis of Pasundan cattle based on D-loop of mitochondrial genome. IOP Conf. Ser. Earth. Env. Sci. 1001:012041. Doi: 10.1088/1755-1315/1001/-1/012041
  6. Wulandari, A., V. M. A. Nurgiartiningsih, Kaswati, and T. E. Susilorini. 2019. Kinship of several Indonesian local cattle by using DNA mitochondrial COI (Cytochrome Oxidase Sub-unit I). Int. Res. J. Adv. Engin. Sci. 4:165-167.
  7. Nijman, I. J, D. C. J. van Boxtel, L. M. van Cann, Y. Marnoch, E. Cuppen, and J. A. Lenstra. 2008. Phylogeny of Y chromosomes from Bovine species. Cladistics. 24:723-726. Doi: 10.1111/j.1096-0031.2008.00201.x
  8. Chaichanathong, S., W. Klinsawat, M. Sukmak, A. Sakulthai, W. Wajjwalku, S. Sripiboon S., N. Kaolim, S. Nakbhun, B. Tunpradit, T. Nipanunt, W. Tipkantha, M. Yindee, and N. Thongtip. 2021. Genetic characterization of Banteng (Bos javanicus) populations in Thailand for conservation. Thai J. Vet. Med. 51:647-654. Doi: 10.14456/-tjvm.2021.78
  9. Pande, A. and S. M. Totey. 1998. ZFX and ZFY loci in water buffalo (Bubalus bubalis): Potential for sex identification. Genet. Analysis: Biomol. Engin. 14:85-88. Doi: 10.1016/s1050-3862(97)10004-3.
  10. Shamsuddin, S. B. 1996. The use of zinc finger protein gene to detect the presence of Y chromosome in the cows. [Thesis]. Universiti Putra Malaysia, Selangor. [cited Feb 23, 2023]. Available from:
  11. Kunda, R. M., P. Kakisina, M. Rumanta, M. Moniharapon, and S. D. Volkandari. 2022. Paternal phylogenetics relationships based on zinc finger protein-Y (ZFY) gene in the Lakor goat breed. UPJOZ. 43:16-22. Doi: 10.56557/UPJOZ/2022/v43i213206
  12. Mauki, D. H., A. C. Adeola, S. I. Ng’ang’a, A. Tijjani, I. M. Akanbi, O. J. Sanke, A. M. Abdussamad, S. C. Olaogun, J. Ibrahim, P. M. Dawuda, G. F. Mangbon, P. S. Gwakisa, T. T. Yin, M. S. Peng, and Y. P. Zhang. 2021. Genetic variation of Nigerian cattle inferred from maternal and paternal genetic markers. Peer J. 9:e10607. Doi: 10.7717/peerj.10607
  13. Feng, J., C. Lajia, D. J. Taylor, and M. S. Webster. 2001. Genetic distinctiveness of endangered dwarf blue sheep (Pseudois nayaur schaeferi): evidence from mitochondrial control region and Y-linked ZFY intron sequences. J. Hered. 92:9-15. Doi: 10.1093/jhered/92.1.9
  14. Gabbianelli, F., F. Alhaique, G. Romagnoli, L. Brancazi, L. Piermartini, C.Ottoni, A. Valentini, and G. Chillemi. 2020. Was the Cinta Senese pig already a luxury food in the late middle ages? Ancient DNA and archaeozoological evidence from Central Italy. Genes. 11:85. Doi: 10.3390/genes-11010085
  15. Clawson, M. L., M. P. Heaton, J. M. Fox, C. G. Chitko-McKown, T. P. L. Smith, and W. W. Laegreid. 2004. Male-specific SRY and ZFY haplotypes in US beef cattle. Anim. Genet. 35:245-249. Doi: 10.1111/j.1365-2052.2004.01122.x
  16. Hall, T. 2011. BioEdit: An important software for molecular biology. GERF Bullet. Biosci. 2:60-61.
  17. Hall, B. G. 2013. Building phylogenetic trees from molecular data with MEGA. Mol. Biol. Evol. 30:1229-1235. Doi: 10.1093/molbev/mst012
  18. Librado, P. and J. Rozas. 2009. DnaSP v5. A software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 25:1451-1452. Doi: 10.1093/bioinformatics/-btp187
  19. Nei, M. and S. Kumar. 2000. Molecular evolution and phylogenetic. Oxford University Press, New York.
  20. Wulandari, A., V. M. A. Nurgiartiningsih, Kuswati, T. E. Susilorini, P. A. Partogi. 2019. Kinship of several Indonesian local cattle by using DNA mitochondrial COI (Cytochrome Oxidase Sub-unit I). Int. Res. J. Adv. Eng. Sci. 4:165-167.
  21. Arifin, J., S. B. Komar, E. Y. Setyowati, U. Yunasaf, Indrijani, and Sulasmi. 2015. The gene distribution, equilibrium law, and effective population size post migration of Pasundan at Majalengka Regency. JIT 15:1-7. Doi: 10.24198/jit.v15i2.9518
  22. Ganguly, I., C. J. S. Singh, S. P. Dixit, M. Sodhi, A. Ranjan, S. Kumar, and A. Sharma. 2020. Y-chromosome genetic diversity of Bos indicus cattle in close proximity to the centre domestication, Sci. Reports. 10:9992. Doi: 10.1038/s41598-020-66133-3
  23. Li, M. H., M. Zerabruk, O. Vangen, I. Olsaker, and J. Kantanen. 2007. Reduced genetic structure of north Ethiophian cattle revealed by Y-chromosome analysis. Heredity. 98:214-221.
  24. Ginja, C., M. C. T. Penedo, L. Melucci, J. Quiroz, O. R. Martinez-Lopez, M.A. Revidatti, A. Martinez-Marinez, J. V. Delgado, and L. T. Gama. 2010. Origins and genetic diversity of new world Creole cattle: inferences from mitochondrial and Y chromosome polymorphisms. Anim. Genet. 41:128-141. Doi: 10.1111/j.1365-2052.2009.01976.x
  25. Prusak, B., W. Sawicka-Zugaj, A. Korwin-Kossakowska, and T. Grzybowski. 2015. Y chromosome genetic diversity and breed relationships in native Polish cattle assessed by microsatellite markers. Turk. J. biol. 39:611-617. Doi: 10.3906/biy-1502-9
  26. Cortez, O., I. Tupac-Yupanqui, S. Dunner, J. Fernandez, and J. Canon. 2011. Y chromosome genetic diversity in the Lidia bovine breed: a highly fragmented population. J. Anim. Breed. Genet. 128:491-496. Doi: 10.1111/j.1439-0388.2011.00951.x
  27. Agung, P. P., F. Saputra, M. S. A. Zein, A. S. Wulandari, W. P. B. Putra, S. Said, and Jakaria. 2019. Genetic diversity of Indonesian cattle breeds based on microsatellite markers. Asian-Australas. J. Anim. Sci. 32:467-476. Doi: 10.5713/ajas.18.0283


  • There are currently no refbacks.