The intensity of the magnetic field on different sex of fetus and accuracy of sex detection using gold ring pendulum

Mawakia Anwar, Daud Samsudewa, Zainul Muhlisin, Jatmiko Endrosuseno

Abstract

Objective: This research aims to measure the intensity of magnetic field of different sex of fetuses and the accuracy of pendulum method for the sex detection of cow fetuses.

Methods: Twenty-six Madura cows with gestational age of more than 4 months were used in this research. This research is composed of three steps : 1). Measuring the intensity of the magnetic field on the fetus using an Electromagnetic Field Meter (EMF) type 827 which is affixed to the right side of the abdomen 2). Observe the pattern of the gold ring pendulum used for sex detection of cow fetus 3). Measure the accuracy of the pendulum ring gold method. The data were analyzed using descriptive analysis.

Results: The result of this research showed that the intensity of the magnetic field of a male fetus is 0.04 µT for a head, 0.07 µT for back, 0.05 µT for abdomen and 0.03 µT for tail. Magnetic field of a female fetus is 0.03 µT for head, 0.05 µT for back, 0.035 µT for abdomen and 0.01 µT for tail. The gold ring pendulum is a unidirectional pattern for detection male sex showed the accuracy of 91.67% and a rotating pattern for female fetuses showed accuracy of 85.71%. The average accuracy of detection using the gold ring pendulum is 88.46%.

Conclusions: The conclusion of this research is male fetuses have a magnetic field higher than male fetus.

Keywords

Gold ring; Fetus; Magnetic field; Sex; Pendulum

Full Text:

PDF

References

  1. Widiati, R., S. Nurtini, T. A. Kusumastuti, S. P. Syahlani, and M. A. U. Muzayyanah. 2019. Performance and economic incentives of cow-calf operation crossbred in the small holder cattle in Yogyakarta-Indonesia. Int. J. of Bus. and Soc. 20(1):417-431.
  2. Saputri, D. E., M. R. A. Taqwa, F. N. Aini, M. I. Shodiqin and L. Rivaldo. 2019. Pemahaman konsep mekanika menentukan arah percepatan pendulum, Sulitkah. J. Pendidikan Fisika. 5(1):110-117. Doi: 10.29 303/jpft.v5i1.1134
  3. Zablotskii, V., T. Polyakova, O. Lunov, and A. Dejneka. 2016. How a high-gradient magnetic field could affect cell life. Sci. Rep. 18(6):37407. Doi: 10.1038/srep37407
  4. Briyantara, S. S. and T. Yulianto. 2015. Aplikasi metode magnetic untuk melokalisasi target zona mineralisasi emas di daerah “x”. J. Youngster Phys. 4(1):1-6. Doi: 10.20956/geo celebes.v4i2.11126
  5. Broestl, L., N. M. Warrington, L. Grandison, T. Abou-Antoun, O. Tung, S. Shenoy, M. M. Tallman, G. Rhee, W. Yang, J. Sponagel, L. Yang, and N. Kfoury-Beaumont. 2022. Gonadal sex patterns p21-induced cellular senescence in mouse and human glioblastoma. Comm. Biol. 5(1). Doi: 10.10 38/s42003-022-03743-9
  6. Wdowiak, A., P. A. Mazurek, A. Wdowiak, and I. Bojar. 2017. Effect of electromagnetic wave on human reproduction. Ann. of Agric. and Environ. Med. 24(1):13-18. Doi: 10.560 4/12321966.1228394
  7. Winarta, B. 2017. 500 Ways To multiply your people’s productivity. Elex Media Komputindo. Jakarta.
  8. Briyantara, S. S. and T. Yulianto. 2015. Aplikasi metode magnetic untuk melokalisasi target zona mineralisasi emas di daerah “x”. J. Youngster Phys. 4(1):1-6. Doi: 10.20956/ geocelebes.v4i2.11126
  9. Asfihani, T., H. Hastuti and C. Imron. 2016. Analisis model lintasan Unopartikel magnet pada pembuluh darah di dalam medan magnet dengan metode runge kutta orde ke empat. J. Math. and Its Appl. 13(1):1-10.
  10. Kartawiguna, D. 2015. Tomografi resonansi magnetik inti; teori dasar, pembentukan gambar dan instrumentasi perangkat kerasnya. Graha Ilmu. Yogyakarta.
  11. Anwar, M., D. Samsudewa, and Z. Muhlisin. 2016. Korelasi antar morfometrik tubuh sapi Madura dengan pola pergerakan pendulum cincin emas sebagai pendeteksi jenis kelamin. Seminar Nasional Teknologi dan Agribisnis Peternakan [Seri IV]. Fakultas Peternakan Universitas Soedirman. Prosiding.
  12. Aprily, N. U., P. Sambodho, and D. W. Harjanti. 2016. Evaluasi kelahiran pedet sapi perah di Balai Besar Pembibitan Ternak Unggul dan Hijauan Pakan Ternak Baturraden. J. Peternakan Indonesia. 18(1):36-43. Doi: 10.25 077/jpi.18.1.36-43.2016
  13. Rizkilka, F. and P. Palloan. 2018. Analisis mineral dan uji sifat magnetik daerah panas bumi di desa Pencong, Gowa. J. Sains dan Pendidikan Fisika. 14(1):89-97. Doi: 10.355 80./jspf.v14i1.6326
  14. Newman, R., M. Bantel, E. Berg, and L. Cross. 2014. Measurement of G using a cryogenic torsion pendulum: post-2008 analysis review. EPJ Web of Conferences. 74:1-9. Doi: 10.10 51/epjconf/20147401001
  15. Fitriawan, M. 2014. Kajian teori dasar pada nanomaterial timbal sebagai proteksi radiasi. J. Fisika. 2:1-4. Doi: 10.13140/RG.2. 1.2859.9842
  16. Salomo, N. Lestari and M. Hamdi. 2019. Analisa pengaruh gaya elektrostatik pada spectrum pencitraan resonansi magnetic (MRI) dalam jaringan biologi. Komunikasi Fisika Indonesia. 16(1):8-11. Doi: 10.31258/ jkfi.16.1.8-11
  17. Ikhsan, N. and J. Widagdo. 2019. Radio kayu Jepara. J. Suluh. 2(1):38-48. Doi: 10.24252/ teknosains.v8i1.109
  18. Azwar, S. 2014. Metode Penelitian. Pustaka Belajar. Yogyakarta.
  19. Taufik, M., Seveline and E. R. Saputri. 2018. Validasi metode analisis kadar kalsium pada susu segar secara titrasi kompleksometri. Agritech. 38(2):187-193. Doi: 10.22146/agri tech.25459
  20. Vazquez, R.R., I. Escobar, T. Franco dan E. Arribas. 2022. Physical units to report intensity of electromagnetic wave. Environ. Res. 204, 112341. Doi: 10.1016/j.enves. 2021.112341

Refbacks

  • There are currently no refbacks.