Stres pengangkutan pada ternak unggas, pengaruh dan upaya penanggulangan

Mohammad Hasil Tamzil, Budi Indarsih, I Nyoman Sukartha Jaya, Ni Ketut Dewi Haryani

Abstract

The transportation of poultry from the farmer to the chicken slaughterhouse (CSH) or to the chicken slaughterplace (CSP) is a chain that plays a significant role in determining the quality of poultry meat. During the transportation, the birds experienced stress from the process of moving from cages to boxes, overcrowding of chickens in boxes, unavailability of feed and drinking water, stress of heat and wind, the process of moving chickens from boxes to temporary shelters, as well as fatigue and fear. All of these processes act simultaneously as stressors, so that chickens suffer from acute stress. Stress in livestock has an impact on the emergence of glycolytic processes, glycolysis and ATP hydrolysis. Muscle glycogen will undergo enzymatic glycolysis and produce lactic acid which triggers changes in the pH of the meat so that the meat becomes pale, soft and watery (PSE = pale, soft, exudative). The most detrimental impact is the emergence of a high mortality rate, so this transportation process must be handled carefully. Some things can be done to reduce the stress of transportation include: chickens that are transported in good health, before transportation, supplymenting antistress is offered, prior to leaving the chickens are sprayed with water. Catching the birds is avoided, and put them in the box and then remove from the box gently. Filling boxes must be in accordance with standards, and transportation is carried out at night.

Keywords

Meat quality; Mitigation efforts; PSE; Poultry; Transportation stress

References

Statistik Peternakan dan Kesehatan Hewan. 2020. Direktorat jendral peternakan dan kesehatan hewan. Kementrian Pertanian Republik Indonesia, Jakarta.

Jayaprakash, G. M., M. Sathiyabarathi, A. Robert, and T. Tamilmani. 2016. Transportation stress in broiler chicken. Int. J. Sci. Environ. Techno. 5:806-809.

FAO. 2001. Guideliness for humane handling, transport and slaughter of livestock. Food and Agriculture Organization of the United Nations Regional Ofice for Asia and the Pacific. RAP Publication, Thailand.

Tamzil, M. H., N. K. D. Haryani, and B. Indarsih. 2016. Reduced expression of heat shock protein (hsp) 70 gene by ascorbic acid supplementation in broiler chickens exposed to transportation stress to maintain the quality of meat and hematological parameters. Int. J. Poult. Sci. 15:432-441. Doi: 10.3923/ijps.2016.432.441.

Tamzil, M. H., B. Indarsih, and I. N. S. Jaya. 2018. Water spraying prior to transportation reduces transportation stress and maintain the meat quality of broiler chickens. Pak. J. Nutr. 17:550-556. Doi: 10.3923/pjn.2018.550. 556

Tamzil, M. H., B. Indarsih, and I. N. S. Jaya. 2019. Rest before slaughtering alleviates transportation stress and improves meat quality in broiler chickens. Int. J. Poult. Sci. 18:585-590. Doi: 10.3923/ijps.2019.585.590

Nawaz, A. H., K. Amoah, Q. Y. Leng, J. H. Zheng, W. L. Zhang, L. Zhang. 2021. Poultry response to heat stress: its physiological, metabolic, and genetic implications on meat production and quality including strategies to improve broiler production in a warming world. Front. Vet. Sci. 8:699081. Doi: 10.3389/ fvets.2021.699081

Barbosa-Filho, J. A., M. L. Queiroz, D. D. Brasil, F. Vieira, I. J. Silva. 2014. Transport of broilers: load microclimate during Brazilian summer. Engenharia Agrícola. 34:405-412.

Qi, J., Y. Zhang, Z. Zhou, and U. Habiba. 2017. Parameters of physiological responses and meat quality in poultry subjected to transport stress. Biol. Syst. 6:175. Doi: 10.4172/2329-6577.1000175

Wang, J., S. Q. Que, X. Liu, M. Jin, T.R. Xin, Z. W. Zou, and B. Xia. 2021. Characteristic and expression of Hsp70 and Hsp90 genes from Tyrophagus putrescentiae and their response to thermal stress. Sci. Rep. 11:11-12. Doi: 10.1038/s41598-021-91206-2

Qaid, M. M., M. A. Al-Garadi. 2021. Protein and Amino Acid Metabolism in Poultry during and after Heat Stress. Animals. 11:1167. Doi: 10.3390/ani11041167

Zhang, B., N. Liu, Z. He, P. Song, M. Hao, Y. Xie, J. Li, R. Liu, and Z. Sun. 2021. Guanidino-Acetic Acid: A Scarce Substance in Biomass That Can Regulate Postmortem Meat Glycolysis of Broilers Subjected to Pre-slaughter Transportation. Bioeng. Biotechnol. 8:1572. Doi: 10.3389/ fbioe.2020. 631194

Zheng, A., H. Cai, S. Lin, S. H. Pirzado, Z. Chen, W. Chang, and G. Liu. 2020. Stress associated with simulated transport, changes serum biochemistry, postmortem muscle metabolism, and meat quality of broilers. Anim. 10:1-12. Doi: 10.3390/ani10 081442

Tang, S., J. Yu, M. Zhang, and E. Bao. 2013. Effects of different heat stress periods on various blood and meat quality parameters in young Arbor Acer broiler chickens. Can. J. Anim. Sci. 93:453-460. Doi: 10.4141/cjas 2013-041

Hidayat, C., Komarudin, E. Wina. 2020. Mitigation of heat stress in broiler chickens with heat shock protein 70 gene expression as its indicator. Wartazoa. 30: 177-188. Doi: 10.14334/wartazoa.v30i4.2563

Xing, T., M. F. Wang, M. Y. Han, X. S. Zhu, X. L. Xu, and G. H. Zhou. 2017. Expression of heat shock protein 70 in transport-stressed broiler pectoralis major muscle and its relationship with meat quality. Anim. Int. J. Anim. Biosci. 11:1599–1607.

Nuraini. Kunci kurangi kematian saat transportasi [Internet]. Farmsco; c2019 [cited 2021 Jul 25]. Available from: https://www.farmsco.co.id/jurnal/kunci-kurangi-kematian-saat-transportasi

Rusyanto, E. Ini cara motor mengangkut barangmu [Internet]. Wordpress; c2015 [cited 2021 Jul 25]. Available from: https://edorusyanto.wordpress.com/2015/06/11/ini-cara-motor-mengangkut barangmu/

Marzuki, A., A.R. Udin, dan J. Arifin. 2015. Manajemen waktu pengangkutan dalam meminimalisir penyusutan bobot badan ayam broiler. Jurnal Ilmiah Inovasi. 15:14-19. Doi: 10.25047/jii.v15i1.53

Pratama, A. J. P., A. Yani, dan R. Afnan. 2016. Pengaruh perbedaan transportasi sistem m-clove dengan konvensional dan jenis kelamin terhadap respon fisiologis ayam broiler. Jurnal Ilmu Produksi dan Teknologi Hasil Peternakan. 4: 204-211.

Cândido, M. G. L., I. F. F. Tinôco, L. F. T. Albino, L. C. S. R. Freitas, T. C. Santos, P. R. Cecon, amd R. S. Gates. 2020. Effects of heat stress on pullet cloacal and body temperature. Poult. Sci. 99:2469-2477.

Erwan, E., V. S. Chowdhury, M. Nagasawa, R. Goda, T. Otsuka, S. Yasuo, and M. Furuse. 2014. Oral administration of D-aspartate, but not L-aspartate, depresses rectal temperature and alters plasma metabolites in chicks. Life Sci. 109:65-71. Doi: 10.1016/j.lfs.2014.05.015

Erwan, E., V. S. Chowdhury, K. Ito, and M. Furuse. 2013. Lauroyl-L-aspartate decreased food intake and body temperature in neonatal chicks. Pharmacol. Biochem. Behav. 113:7-11. Doi: 10.1016/j.pbb.2013.10. 010

Oloyo, A. and A. Ojerinde. 2019. Poultry Housing and Management. In: Kamboh, A.A, editor, Poultry - An Advanced Learning. Intech Open. Doi: 10.5772/ intechopen. 83811

Tamzil, M. H., R. R. Noor, P. S. Hardjosworo, W. Manalu, and C. Sumantri. 2013. Acute heat stress exposure on three lines of chickens with different heat shock protein (HSP)-70 genotypes. Int. J. Poult. Sci. 12:264-272. Doi: 10.3923/ijps. 2013.264.272

Tamzil, M. H., R. R. Noor, P. S. Hardjosworo, W. Manalu, and C. Sumantri. 2014. Hematological response of chickens with different heat shock protein 70 genotypes to acute heat stress. Int. J. Poult. Sci. 13:14-20. Doi: 10.3923/ ijps.2014.14.20

Tamzil, M. H. 2014. Stres panas pada unggas: metabolisme, akibat dan upaya penanggulangannya. Wartazoa. 24:57-66. Doi: 10.14334/wartazoa.v24i2.1049

Soleimani, A.F and I. Zulkifli. 2010. Effects of high ambient temperature on blood parameters in red jungle fowl, village fowl and broiler chickens. J. Anim. Vet. Adv. 1201- 1207. Doi: 10.3923/javaa.2010.1201. 1207

Tetel, V., B. Van Wyk, and G.S. Fraley. 2021. Sex differences in glucocorticoid responses to shipping stress in Pekin ducks. Poult. Sci. 101: 101534. Doi: 10. 1016/j.psj.2021.101534

Jiang, N.N., T. Xing, P. Wang, C. Xie, and X. L. Xu. 2015. Effects of water-misting sprays with forced ventilation after transport during summer on meat quality, stress parameters, glycolytic potential and microstructures of muscle in broilers. Asian-Austr. J. Anim. Sci. 28: 1767-1773. Doi: 10.5713/ajas.15.0152

Rodrigues, D. R., M. B. Café, R. M. Jardim Filho, E. Oliveira, T. C. Trentin, D. B. Martins, and C. S. Minafra. 2017. Metabolism of broilers subjected to different lairage times at the abattoir and its relationship with broiler meat quality. Anim. Sci. Tech. Inspect. Anim. Prod. Arq. Bras. Med. Vet. Zootec. 69: 733-741. Doi: 10.1590/1678-4162-9268

Siegel, H. S. 1995. Stress, strains, and resistance. Br. Poult. Sci. 36:3-22. Doi:10. 1080/00071669508417748

Bohler, M. W., V. S. Chowdhury, M. A. Cline, and E. R. Gilbert. 2021. Heat stress responses in birds: a review of the neural components. Biology. 10: 1095. Doi: 10.33 90/biology10111095

Ma, B., L. Zhang, J. Li, T. Xing, Y Jiang, and F. Gao. 2021. Heat stress alters muscle protein and amino acid metabolism and accelerates liver gluconeogenesis for energy supply in broilers. Poult. Sci. 100: 215–223. Doi: 10.1016/j.psj.2020.09.090

Sohail, M. U., A. Ijaz, M. S. Yousaf, K. Ashraf, H. Zaneb, M. Aleem, and H. Rehman. 2010. Alleviation of cyclic heat stress in broilers by dietary supplementation of mannan-oligosaccharide and Lactobacillus -based probiotic: dynamics of cortisol, thyroid hormones, cholesterol, C-reactive protein, and humoral immunity. Poult. Sci. 89:1934-938.

Xu, Y, X. Lai, ZLi, X. Zhang, and Q. Luo. 2018. Effect of chronic heat stress on some physiological and immunological parameters in different breed of broilers. Poult. Sci. 97: 4073–4082. Doi: 10.3382/ ps/pey256

del Barrio, A.S., W.D. Mansilla, A. Navarro-Villa, J.H. Mica, J.H. Smeets, L.A. den Hartog, and A.I. García-Ruiz. 2020. Effect of mineral and vitamin C mix on growth performance and blood corticosterone concentrations in heat-stressed broilers. J. Appl. Poult. Res. 29:23–33. Doi: 10.1016/j. japr.2019.11.001

Li, M. and J. W. Chen. 2015. Effects of heat stress on the daily behavior of wenchang chickens. Rev. Bras. Cienc. Avic. 17: 559-566. Doi: 10.1590/1516-635X1704559-566

Puvadolpiron, S. and J. P. Thaxton. 2000. Model of physiological stress in chickens 3. Temporal patterns of response. Poult. Sci. 79:377-382. Doi: 10.1093/ps/79.3.377

Hosna, H., H. Ahmad, G. Abolghasem, N.M. Hassan, N.M. Reza, 2015. The Effect of grape seed extract and vitamin C feed supplementation on some blood parameters and Hsp70 gene expression of broiler chickens suffering from chronic heat stress. Itali. J. Anim. Sci. 14: 3273. Doi: 10.4081/ ijas.2014.3273.

Haryoko, I., P. Suparman, B. Haryanto, dan A. H. D. Rahardjo. 2005. Pengaruh tranportasi dan pemulihan cekamannya dengan pemberian air gula dan pengistiratan terhadap kualitas daging kambing lokal. J. Indon. Trop. Anim. Agric. 30:13-19.

Arikan, M.S., A.C. Akin, A. Akçay, Y. Aral, S. Sariözkan, M.B. Çevrimili, P. Polat. 2017. Effects of transportation distance, slaughter age, and seasonal factors on total losses in broiler chickens. Brazil. J. Poult. Sci. 19: 421-428. Doi: 10.1590/1806-9061-2016-0429

Caffrey, N.P., I.R. Dohoo, and M.S. Cockram. 2017. Factors affecting mortality risk during transportation of broiler chickens for slaughter in Atlantic Canada. Prev. Vet. Med. 147:199208. Doi: 10.1016/j. prevetmed.2017.09.011

Cockram, M.S. and K.J. Dulal. 2018. Injury and mortality in broilers during handling and transport to slaughter. Can. J. Anim. Sci. 98:416:432. Doi:10.1139/cjas-2017-0076

Vecerek, V., E. Voslarova, F. Conte, L. Vecerkova, and I. Bedanova. 2016. Negative trends in transport-related mortality rates in broiler chickens. AJAS. 29: 1796-1804. Doi: 10.5713/ajas.15.0996

Gou, Z., K.F.M. Abouelezz, Q. Fan, L. Li, X. Lin, Y. Wang, X. Cui, J.Ye, M.A. Masoud, S. Jiang, and X. Ma. 2021. Physiological effects of transport duration on stress biomarkers and meat quality of medium-growing Yellow broiler chickens. Animal. 15:100079. Doi: 10.1016/j.animal.2020.100079

Wang, R., L. Rongrong, L. Hai, L. Zhu, Z. Yimin, and M. Yanwei. 2017. Effect of acute heat stress and slaughter processing on poultry meat quality and postmortem carbohydrate metabolism. Poult. Sci. 96: 738-746. Doi:10.3382/ps/pew329

Gholamreza, Z., H. Xi, F. Xi, and A. Dong. 2019. How can heat stress affect chicken meat quality? – a review. Poult. Sci. 98: 1551-1556. Doi: 10.3382/ps/pey399

Jing, Q., Y. Zhang, Z. Zhou, and U. Habiba. 2017. Parameters of physiological responses and meat quality in poultry subjected to transport stress. Biol. Syst. Open Access. 6:1-6. Doi: 10.4172/2329-6577.1000175

Zhang, C., X. Zhao, L. Wang, L. Yang, X. Chen, and Z. Geng. 2017. Resveratrol beneficially affects meat quality of heat‐stressed broilers which is associated with changes in muscle antioxidant status. Anim. Sci. J. 88:1569-1574. Doi: 10.1111/ asj.12812

Zhang, C., J. Luo, B. Yu, P. Zheng, Z. Huang, X. Mao, J. He, J. Yu, J. Chen, and D. Chen. 2015. Dietary resveratrol supplementa tion improves meat quality of finishing pigs through changing muscle fiber characteristics and antioxidative status. Meat. Sci. 102:15–21. Doi: 10.1016/.meatsci. 2014.11.014

Tang, S., J. Yu, M. Zhang, and E. Bao. 2013. Effects of different heat stress periods on various blood and meat quality parameters in young Arbor Acer broiler chickens. Can. J. Anim. Sci. 93: 453-460. Doi: 10.4141/ cjas2013-041

Petracci, M. and C. Cavani. 2012. Muscle growth and poultry meat quality issues. Nutrients. 4:1–12. Doi:10.3390/nu4010001

Petracci, M., M. Bianchi, and C. Cavani. 2010. Pre-slaughter handling and slaughtering factors influencing poultry product quality. World’s. Poult. Sci. J. 66:17–26. Doi: 10.1017/S0043933910000024

Komiyama, C. M., V. C. Pelícia, V. B. Fascina, M. M.Aoyagi, L .L. Coutinho, J. R. Sartori, and A. S. A. M. T. Moura. 2016. Carcass and meat quality traits of chickens fed diets concurrently supplemented with vitamins C and E under constant heat stress. Animal: 10:163-171. Doi: 10.1017/ S1751731115001998

Gou, Z., K. F. M. Abouelezz, Q. Fan, L. Li, X. Lin, Y. Wang. X. Cui, J. Ye, M. A. Masoud, S. Jiang, and X. Ma. 2021. Physiological effects of transport duration on stress biomarkers and meat quality of medium-growing Yellow broiler chickens. Animals. 15:100079. Doi: 10.1016/j.animal. 2020.100079

Imik, H., M. A. Atasever, S. Urcar, H. Ozlu, R. Gumus, and M. Atasever. 2012. Meat quality of heat stress exposed broilers and effect of protein and vitamin E. Br. Poult. Sci. 53: 689-98. Doi: 10.1080/00071668. 2012. 736609

Bjelakovic, G., D. Nikolova, and C. Gluud. 2013. Meta-regression analyses, meta-analyses, and trial sequential analyses of the effects of supplementation with beta-carotene, vitamin A, and vitamin E singly or in different combinations on all-cause mortality: do we have evidence for lack of harm. PloS One. 8:1-14. Doi: 10.1371/jour nal.pone.0074558

Peter, S. 2016. Antioxidant systems in poultry biology: Superoxide dismutase. Anim. Nutr. 1:8. Doi: 10.21767/2572-5459. 100008

Shahab, G. H., H. Mahmood, M. Mohammad, and A. Alireza. 2012. Effects of dietary selenium, vitamin E, and their combination on growth, serum metabolites, and antioxidant defense system in skeletal muscle of broilers under heat stress. Biol. Trac. Elemen. Research. 148:332-330. Doi: 10.1007/s12011-012-9374-0

Márta, H. and B. László. 2018. Impact of selected antioxidant vitamins (Vitamin A, E and C) and micro minerals (Zn, Se) on the antioxidant status and performance under high environmental temperature in poultry. A review. Anim. Sci. 68(3): 152–160. Doi: 10.1080/09064702.2019.1611913

Refbacks

  • There are currently no refbacks.