Efek suplementasi tepung kulit jengkol pada pelepah sawit fermentasi terhadap profil mikroba rumen dan produksi gas metan in vitro

Nurhaita Nurhaita, Nur Hidayah, Neli Definiati


Objective: This research was aimed to evaluation the effect of supplementation jengkol peel powder in fermented oil palm fronds on rumen microbes profile and methane production on in vitro.

Methods: The used design was factorial randomized block design with four treatments supplementation of jengkol peel powder at 0, 2, 4, and 6% and four groups as replications. The observed variables were rumen microbes profile (population of total bacteria, cellulolytic, and protozoa), methane production, partial volatile fatty acid (VFA) proportion and acetate/propionate (A/P) ratio. The data were analyzed using ANOVA and different among treatments means examined by Duncan Multiple Range Test (DMRT).

Results: The result showed that supplementation of jengkol peel powder at 6% substrate increased (P<0.05) total and cellulolytic bacteria population. Jengkol peel powder supplementation as much as 4 and 6% decreased (P<0.05) protozoa population, methane production, acetate proportion and A/P ratio. Supplementation of jengkol peel powder at 2% increased (P<0.05) propionate production.

Conclusions: In conclusion, fermented oil palm fronds can be substituted with jengkol peel powder at 2% substrate that did not disturb rumen microbes profile, decreased methane production, acetate proportion, A/P ratio and increased propionate production on in vitro.


Rumen microbes profile; Methane production; Fermented oil palm fronds; Jengkol peel powder


  1. Khiaosa-ard, R. and Q. Zebeli. 2013. Meta-analysis of the effects of essential oils and their bioactive compounds on rumen fermentation characteristics and feed efficiency in ruminants. J. Anim. Sci. 91:1819–1830. Doi: 10.2527/jas.2012-5691
  2. Beauchemin, K.A. and McGinn. 2006. Methane emissions from beef cattle: effects of fumaric acid, essential oil, and canola oil. J. Anim. Sci. 84:1489– 1496. Doi.org/ 10.2527/2006.8461489x
  3. ayanegara, A. 2008. Reducing methane emissions from livestock: nutritional approaches. Proceedings of Indonesian Students Scientific Meeting (ISSM), Institute for Science and Technology Studies (ISTECS) European Chapter, 13-15 May 2008, Delft, the Netherlands: 18-21
  4. Klevenhusen, F., A. Muro-Reyes, R. Khiaosa-ard, B. U. Metzler-Zebeli, and Q. Zebeli. 2012. A meta-analysis of effects of chemical composition of incubated diet and bioactive compounds on in vitro ruminal fermentation. Anim. Feed Sci. Technol. 176:61–69. Doi.org/10.1016/ j.anifeedsci.2012.07.008
  5. Hidayah, N., R. Lubis, K.G. Wiryawan, and S. Suharti. 2019. Phenotypic identification, nutrients content, bioactive compounds of two jengkol (Archidendron jiringa)varieties from Bengkulu, Indonesia and their potentials as ruminant feed. Biodiv. 20:1671-1680. Doi.org/10.13057/biodiv/d20 0624
  6. Hart K. J., D. R. Ya nez-Ruiz, S.M. Duval, N.R. McEwan, and C.J. Newbold. 2008. Plant extracts to manipulate rumen fermentation. Anim. Feed Sci. Technol. 147:8–35. Doi.org/10.1016/j.anifeedsci.2007 .09.007
  7. Soliva, C. R., S. L. Amelchanka, S. M. Duval, and M. Kreuzer. 2011. Ruminal methane inhibition potential of various pure compounds in comparison with garlic oil as determined with a rumen simulation technique (Rusitec). British J. of Nutr. 106:114–122. Doi: 10.1017/S000711451000 5684
  8. Nurhaita, Ruswendi, Wismalinda, R., dan Robiyanto. 2014. Pemanfaatan pelepah sawit sebagai sumber hijauan dalam ransum sapi potong. J. Past. 4:38-41. Doi.org/10.24843/Pastura.2014.v04.i01.p09
  9. Nurhayu, A., A. B. L. Ishak, dan A. Ella. 2014. Pelepah dan daun sawit sebagai pakan substitusi hijauan pada pakan ternak sapi potong di kabupaten luwu timur sulawesi selatan. Balai Pengkajian Teknologi Pertanian Sulawesi Selatan. Makasar
  10. Chaves, A. V., L. C. Thompson, A. D. Iwaasa, S. L. Scott, M. E. Olson, C. Benchaar, D. M. Veira, and T. A. McAllister. 2006. Effect of pasture type (alfalfa vs. grass) on methane and carbon dioxide production by yearling beef heifers. Can. J. of Anim. Sci. 86:409-418. Doi.org/10.4141/A05-081
  11. Astuti, T., M. N. Rofiq, dan Nurhaita. 2017. Evaluasi kandungan bahan kering, bahan organik dan protein kasar pelepah sawit fermentasi dengan penambahan sumber karbohidrat. J. Peter. 14:42–47
  12. Tilley, J.M.A. and R.A. Terry. 1963. A two-stage technique for the in vitro digestion of forage crops. J. of the Brit. Grasslan Soc. 18:104-111. Doi.org/10.1111/j.1365-2494.19 63.tb00335.x
  13. Ogimoto, K. and S. Imai . 1981. Atlas of rumen microbiology. Japan Scientific Societes. Tokyo
  14. Moss, A.R., J.P. Jouany, and J. Newbold. 2000. Methane production by ruminants: its contribution to global warming. Annal. Zootech. 49:231-253. hal.archives-ouvertes. fr/hal-00889894/
  15. Stell, R. G. and J. H. Torrie. 1991. Prinsip dan prosedur statistik, suatu pendekatan biometrik. edisi 2. alih bahasa B. Sumantri. PT. Gramedia Pustaka Utama. Jakarta
  16. Wallace, R.J. 2004. Antimicrobial properties of plant secondary metabolites. Proceeding of the Nutrition Society 63:621–629.
  17. Patra, A.K., J. Stiverson, and Z.Yu. 2012. Effects of quillaja and yucca saponins on communities and select populations of rumen bacteria and archaea, and fermentation in vitro. J. of Appl. Microbiol. 113:1329-1340. Doi: 10.1111/j.1365-2672.201 2.05440.x.
  18. Patra, A.K. and Z. Yu. 2013. Effects of vanillin, quillaja saponin, and essential oils on in vitro fermentation and protein-degrading microorganisms of the rumen. Appl. Microbiol. Biotech. 1-9. Doi: 10.1007 /s00253-013-4930-x
  19. Guo, Y.Q., J.X. Liu, Y. Lu, W.Y. Zhu, S.E. Denman, and C.S. McSweeney. 2008. Effect of tea saponin on methanogenesis, microbial community structure and expression of mcrA gene, in cultures of rumen micro-organisms. Lett. in Appl. Microbiol. 47:421–426. Doi: 10.1111/j.1472-765X.2008.02459.x.
  20. Hu,W.L,J.X. Liu, J.A. Ye,Y.M. Wu, and Y.Q. Guo. 2005. Effect of tea saponin on rumen fermentation in vitro. Anim. Feed Sci. Technol. 120:333–339. Doi: 10.1080/17450 390500353119.
  21. Hess, H.D., M. Kreuzer, T.E. Diaz, C.E. Lascano, J.E. Carulla, C.R. Soliva, and A. Machmüller. 2003. Saponin rich tropical fruits affect fermentation and methanogensesis in faunated and defaunated rumen fluid. Anim. Feed Sci. and Technol. 109:79–94. Doi.org/10.1016/ S0377-8401(03)00212-8
  22. Poungchompu, O., M. Wanapat, C. Wachirapakorn, S. Wanapat, and A. Cherthong. 2009. Manipulation of ruminal fermentation and methane production by dietary saponins and tannins from mangosteen peel and soapberry fruit. Archiv. of Anim. Nutr. 63:389-400. Doi: 10.1080/17450390903020406
  23. Anantasook, N., M. Wanapat, P. Gunun, and A. Cherdthong. 2016. Reducing methane production by supplementation of Terminalia chebula RETZ. containing tannins and saponins. Anim. Sci. J. 87:783–790. Doi: 10.1111/asj.12494
  24. Jadhav, R.V., A. Kannan, R. Bhar, O.P. Sharma, A. Gulati, K. Rajkumar, G. Mal, B. Singh, and M.R. Verma. 2018. Effect of tea (Camellia sinensis) seed saponins on in-vitro rumen fermentation, methane production and true digestibility at different forage to concentrate ratios. J. of Appl. Anim. Research. 46:118-124. Doi.org/10.1080/09712119.2016.1270823
  25. Nurhaita, N. Definiati, dan N. Hidayah. 2020. Karakteristik fermentabilitas dalam rumen in vitro pada pelepah sawit fermentasi yang disuplementasi tepung kulit jengkol. J. Peter. 17:39-44. Doi: 10.24014/jupet.v17i1.7710
  26. Kara, K., B.K. Güçlü, and E. Baytok. 2015. Comparison of nutrient composition and anti-methanogenic properties of different Rosaceae species. J. Anim. Feed Sci. 24:308–31. Doi.org/10.22358/jafs/65613/2015
  27. Zinder, S.H. 1993. Physiological ecology of methanogens. In: J.G., Ferry (eds), methanogenesis: ecology, physiology, biochemistry & genetics. Chapman & Hall.Inc. New York.
  28. Feng, Zhi-Hua., Yu-Feng Cao, Yan-Xia Gao, Qiu-Feng. Li, and Jian-Guo Li. 2012. Effect of gross saponin of tribulus terrestris on ruminal fermentation and methane production in vitro. J. of Anim. and Vet. Adv. 11: 2121-2125
  29. Beauchemin, K.A., S.M. McGinn, T.F. Martinez, and T.A. McAllister. 2007. Use of condensed tannin extract from quebracho trees to reduce methane emissions from cattle. J. Anim. Sci. 85:1990– 199. Doi: 10.2527/jas.2006-686
  30. Luthfi, N., V. Restitrisnani, and M. Umar. 2018. The optimation of crude fiber content on fattening Madura bees cattle to achaive good A:P ratio and low methane production. IOP Conf. Series: Earth and Environmental Science 119: 1-5


  • There are currently no refbacks.