GAMBARAN SIFAT FISIK DAN MEKANIK TANAH DI KECAMATAN KAUMAN KABUPATEN TULUNGAGUNG

Niko Andika Erwanda, Agata Iwan Candra, Atsfiela Dzulkhan Qalby, Salman Alfaridh Pasya, Nadi Rheiza Fathurrohman, Prendy Eliya Mahendra, Muhammad Rosyid Abdul Rohman Fauzy

Abstract

Bencana tanah longsor di Kecamatan Kauman, Kabupaten Tulungagung, Jawa Timur mengakibatkan berbagai dampak buruk bagi kegiatan masyarakat dan lingkungan. Tujuan penelitian ini adalah untuk mengetahui klasifikasi tanah di daerah tersebut, metode yang digunakan adalah pengujian batas atterberg, analisa ayakan, pemadatan dan kuat geser. Sampel tanah diambil dari lokasi bekas longsoran, dan selanjutnya di uji di Laboratorium Teknik Sipil Universitas Kadiri. Hasil dari penelitian pada pengujian batas cair mendapatkan nilai 60,815%, pengujian batas plastis mendapatkan nilai sebesar 32,24%, pengujian analisa ayakan mendapatkan hasil golongan tanah berjenis SW, pengujian pemadatan tanah mendapatkan nilai kadar air optimum sebesar 34,93% dan berat volume kering maksimum sebesar 1,38 gr/cm3 dan pengujian kuat geser tanah mendapatkan nilai kohesi sebesar 2,532 Kpa dan nilai sudut geser sebesar 17,391 derajat, maka dapat disimpulkan bahwa tanah tersebut rawan bencana longsor, sehingga perlunya sebuah desain khusus pada lereng tersebut terkait kemiringan kelerengannya dan model dari dinding penahan untuk mengatasi longsor.

Keywords

Longsor, Tanah Lunak, Batas Atterberg, Pemadatan, Kuat Geser Tanah

Full Text:

PDF

References

[1] H. P. Tulungagung, “Polsek Kalangbret Cek Lokasi Longsor Yang Menutup Akses Jalan Desa Bolorejo menuju Desa Tiudan,” 28 Maret, 2022. https://tribratanews.tulungagung.jatim.polri.go.id/28/03/2022/polsek-kalangbret-cek-lokasi-longsor-yang-menutup-akses-jalan-desa-bolorejo-menuju-desa-tiudan/

[2] J. Pos, “Tertutup Longsor, Jalan Terowongan Dibersihkan,” 11 April, p. 1, 2015. [Online]. Available: https://www.pressreader.com/indonesia/jawa-pos/20150411/281732678006787

[3] Y. Zaika, A. Rachmansyah, and Harimurti, “Geotechnical behaviour of soft soil in East Java, Indonesia,” IOP Conf. Ser. Mater. Sci. Eng., vol. 615, no. 1, 2019, doi: 10.1088/1757-899X/615/1/012043.

[4] Ц. Ц. Ли and Л. В. Конг, “Свойства ползучести расширяющихся грунтов в трехосных осушенных условиях и ее нелинейная конститутивная модель (Creep Properties of Expansive Soil Under Unloading Stress and its Nonlinear Constitutive Model),” Yantu Lixue/Rock Soil Mech., vol. 40, no. 9, pp. 3465–3473, 2019.

[5] S. Providakis, C. D. F. Rogers, and D. N. Chapman, “Predictions of settlement risk induced by tunnelling using BIM and 3D visualization tools,” Tunn. Undergr. Sp. Technol., vol. 92, no. July, p. 103049, 2019, doi: 10.1016/j.tust.2019.103049.

[6] S. N. Kane, A. Mishra, and A. K. Dutta, “Preface: International Conference on Recent Trends in Physics (ICRTP 2016),” J. Phys. Conf. Ser., vol. 755, no. 1, 2016, doi: 10.1088/1742-6596/755/1/011001.

[7] H. Polivanov, E. V. Barroso, R. Porto, F. P. Ottoni, and T. P. de Andrade, “The Role of Electrochemistry and Mineralogy in the Geotechnical Behavior of Salinized Soils,” Anu. do Inst. Geociencias, vol. 44, pp. 1–14, 2021, doi: 10.11137/1982-3908_2021_44_42738.

[8] X. Ding, X. Xiao, J. Cui, D. WU, and Y. Pan, “Damage evolution, fractal dimension and a new crushing energy formula for coal with bursting liability,” Process Saf. Environ. Prot., vol. 169, no. October 2022, pp. 619–628, 2023, doi: 10.1016/j.psep.2022.11.059.

[9] S. Tabrizi-Zarringhabaei, R. G. Ejlali, M. Yousefzadeh Fard, and S. Sayyedfattahi, “An image-based method to determine the particle size distribution (PSD) of fine-grained soil,” Rud. Geol. Naft. Zb., vol. 34, no. 3, pp. 81–88, 2019, doi: 10.17794/rgn.2019.3.9.

[10] M. Heidemann, L. A. Bressani, and J. A. Flores, “Residual Shear Strength of a Residual Soil of Granulite,” Soils and Rocks, vol. 43, no. 1, pp. 31–41, 2020, doi: 10.28927/SR.431031.

[11] T. T. M. Nguyen et al., “Stabilization of Silty Clayey Dredged Material,” J. Mater. Civ. Eng., vol. 30, no. 9, pp. 1–11, 2018, doi: 10.1061/(asce)mt.1943-5533.0002391.

[12] K. Dołżyk-Szypcio, “Direct Shear Test for Coarse Granular Soil,” Int. J. Civ. Eng., vol. 17, no. 12, pp. 1871–1878, 2019, doi: 10.1007/s40999-019-00417-2.

[13] ASTM, “D4318 - 00: Standards,for Liquid Limit, Plastic Limit, and Plasticity Index of Soils This c of soils, ASTM D 4318-00,” ASTM Int., vol. 04, pp. 1–14, 2000.

[14] ASTM C136, “ASTM C136/C136M Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates,” ASTM Stand. B., pp. 3–7, 2019.

[15] ASTM International, “ASTM 698-07: Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3)),” ASTM Int., vol. 3, p. 15, 2007, [Online]. Available: https://www.resolutionmineeis.us/sites/default/files/references/astm-D698.pdf

[16] ASTM D3080, “ASTM D 3080 - 03 Direct Shear Test of Soilds Under Consolidated Drained Conditions,” ASTM Int., vol. 04, p. 7, 2003, [Online]. Available: www.astm.org

[17] B. M. Das, “Mekanika Tanah (Prinsip-prinsip Rekayasa Geoteknik,” Penerbit Erlangga, pp. 1–300, 1995.

[18] M. K. Uddin, “A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade,” Chem. Eng. J., vol. 308, pp. 438–462, 2017, doi: 10.1016/j.cej.2016.09.029.

[19] H. C. Hardiyatmo, “Mekanika Tanah,” Angew. Chemie Int. Ed. 6(11), 951–952., p. 2017, 2010.

[20] K. C. Onyelowe, “Kaolin soil and its stabilization potentials as nanostructured cementitious admixture for geotechnics purposes,” Int. J. Pavement Res. Technol., vol. 11, no. 7, pp. 717–724, 2018, doi: 10.1016/j.ijprt.2018.03.001.

[21] Das, “Principles of Geotechnical Engineering,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2013. [22] R. Andrewwinner and S. S. Chandrasekaran, “Finite Element and Vulnerability Analyses of a Building Failure due to Landslide in Kaithakunda, Kerala, India,” Adv. Civ. Eng., vol. 2022, 2022, doi: 10.1155/2022/5297864.

Refbacks

  • There are currently no refbacks.