KINERJA BETON MENGANDUNG AGREGAT KASAR DAUR ULANG LIMBAH BONGKAHAN BETON

syahrul syahrul

Abstract

Limbah beton yang dihasilkan konstruksi dan pembongkaran adalah masalah utama yang diproduksi dalam jumlah besar, pemanfaatan limbah bongkahan beton secara keseluruhan sebagai pengganti bahan agregat konvensional merupakan cara untuk mereduksi limbah hasil pembuatan sampel pengujian dan konstruksi serta mengurangi ekplorasi material alam yang berdampak pada lingkungan dan berbagai pencemaran sumber daya alam akibat emisi debu dan limbah. Bahan limbah sepenuhnya dapat didaur ulang dan dapat digunakan dengan beberapa kemanfaatan. Kinerja material agregat daur ulang dari limbah bongkahan beton memiliki potensi yang dapat mempengaruhi kekuatan material beton. Penggunaan agregat kasar berkisar 70 hingga 80 % pada campuran beton sehingga penggunaan kembali agregat kasar beton daur ulang telah dilaporkan secara luas, tetapi hanya sedikit penelitian yang berfokus pada daur ulang dan ekstraksi nilai dari butiran beton. Pengujian laboratorium metode yang digunakan dengan beberapa parameter mengetahui sifat fisik material campuran beton dan karakteristik kekuatan tekan beton kubus 150 mmx 150 mm x 150 mm dengan jumlah 12 sampel 0 % agregat kasar limbah daur ulang dan 12 sampel 100 % agregat kasar daur ulang, kekuatan tekan beton ditinjau pada 3 dan 28 hari setelah dilakukan perawatan berdasarkan Standar Nasional Indonesia. Kekuatan tekan beton agregat limbah daur ulang bongkahan beton meningakat 11,54 % pada umur 3 hari dan terjadi penurunan 27,64 % pada umur 28 hari terhadap kekuatan tekan beton agregat alami

Keywords

Limbah bongkahan, Agregat alami, Sifat fisik, Kekuatan tekan

Full Text:

PDF

References

Abera, Y. S. A. (2022). “Performance of concrete materials containing recycled aggregate from construction and demolition waste”. Result and Materials (14) 100278, https://doi.org/10.1016/j.riama.2022.100278.

Arun, A., Chekravarty, D., & Murali, K. (2021). “Comparative analysis on natural and recycled coarse aggregate concrete”. Materials Today: Proceedings, https:/doi.org/10.1016/j.matpr.2021.04.352.

Azees M. O., Ahmad S., Al-dulaijan S. U., Maslehuddin M., Naqvi A. A. (2019). “Radiation Shielding Performance of Heavy-Weight Concrete Mixtures. Construction and Building Materials (224) 284-291, https://doi.org/10.1016/j.conbuildmat.2019.07.077.

Bamigboye, G., Tarverdi, K., Adigun, D., Daniel, B., Okorie, U., & Adediran, J. (2022). “An apprasial of the mechanical, microstructural, and thermal characteritics of concrete containing waste PET as coarse aggregate”. Cleaner Waste Systems (1) 100001, https://doi.org/10.1016/j.clwas.2022.100001.

Cuesta V. R., Evangelista L., Brito J. D., Skaf M., Manso J. M. (2022). “Shringkage Prediction of Recycled Aggregate Structural Concrete With Alternative Binder Through Partial Correction Coefficients”. Cement and Concrete Composite (129) 104506, https://doi.org/10.1016/j.cemconcomp.2022.104506.

Dabiri, H., Kioumarsi, M., Kheyroddin, A., Kandiri, A., & Sartipi, F. (2022). “Compressive strength of concrete with recycled aggregate; a machine learning-based evaluation”. Cleaner Materials (3) 100044, https://doi.org/10.1016/j.clema.2022.100044.

Dalal, S. P., Dalal, P., Motiani, R., & Solanki, V. (2022). “Experimental investigation on recycling of waste pharmaceutical blister powder as partial replacement of fine aggregate in concrete”. Resource, Conservation & Recyling Advances (14) 200076, https://doi.org/10.1016/j.rcradv.2022.200076.

Ding, T., Wong, H., Qiao, X., & Cheeseman, C. (2022). “Depeloving circular concrete: acid treatment of waste concrete fines”. Jurnal of Cleaner Production (365) 132615, https://doi.org/10.1016/j.jclepro.2022.132615.

Eckbo, C., Okkenhaung, G., & Hale, S. E. (2022). “The effects od soil organic matter on leaching of hexavalent chromium from concrete waste: batch and column experiments”. Journal of Environmental Management (309) 114708, https://doi.org/10.1016/j.jenvman.2022.114708.

Fladvad M., and Onnela T. (2020). “Influence of Jaw Crusher Parameters on the Quality of Primary Crushed Aggregates”. Minerals Engineering (151) 106338, https://doi.org/10.1016/j.mineng.2020.106338.

Gil, J. P., Palencia, C., Monteiro, N. S., & Garcia, R. M. (2022). “To predict the compressive strength of self compaction concrete with recycled aggregates utilizing ensemble machine learning models”. Case Studies in Construction Materials (16) e01046, https://doi.org/10.1016/j.cscm.2022.e01046.

Joshua O., Olusola K. O., Ndaku D. O., Ede A. N., Olofinnade O. M., and Job O. F. (2020). “Modified Mix Design Development Specification Batched by Volume from Specified Mix Design by Weight Towards Improved Concrete Production”. Methodsx (7) 100817, https://doi.org/10.1016/j.mex.2020.100817.

Khatab, H. R., Al-Samaraie, M. I. A., Muhammed, Z. Q., Al-Samaraie, A. A. (2021). “Teh influence of waste of concrete masonry units as coarse aggregate on concrete properties”. Material Today: Proceedings (42) 1810-1815, https://doi.org/10.1016/j.matpr.2020.12.186.

Le, H. B., & Bui, Q. B. (2020). “Recycled aggregate concretes a state of the art from the microstructure to the structural performance”. Construction and Building Materials (257) 119522, https://doi.org/10.1016/j.conbuildmat.2020.119522.

Liu, Z., Chin, C. S., & Xia, J. (2021). “ Improving recycled coarse aggregate (RAC) and recycled coarse aggregate concrete (RCAC) by biological denitrification phenomenon”. Constructuion and Building Materials (301) 124338. https://doi.org/10.106/j.conbuildmat.2021.124338.

Meena, R. V., Jain, J. K., Chouhan, H. S., & Beniwal, A. S. (2022). “Use of waste ceramics to produce sustainable concrete: a review”. Cleaner Materials (4) 100085, https://doi.org/10.1016/j.clema.2022.100085.

Miraldo, S., Lopes, S., Torgal, F. P., & Lopes, A. (2021). “Advantages and shortcomings of the utilization of recyled wastes As aggregates in structural concretes”. Construction and Building Materials (298) 123729, https://doi.org/10.1016/j.conbuildmat.2021.123729.

Mohe N. S., Shewalul Y. W., and Agon E. C. (2022). “Experimental Investigation on Mechanical Properties of Concrete Using Different Sources of Water for Mixing and Curing Concrete”. Case Studies in Construction Materials (16) e00959, https://doi.org/10.1016/j.cscm.2022.e00959.

Nedeljkovic, M., Visser, J., Savija, B., Valcke, S., & Schlangen, E. (2021). “Use of fine recycled concrete aggregates in concrete: a crtical review”. Journal of Building Engineering (38) 102196, https://doi.org/10.1016/j.jobe.2021.102196.

Panda K. C., Behera S., and Jena S.(2020). “Effect of Rice Husk Ash on Mechanical Properties of Concrete Containing Crushed Seashell as Fine Aggregate”. Materials Today: Proceedings, https://doi.org/10.1016/j.matpr.2020.04.049.

Park S., Moges K. A., Wu S., Pyo S. (2022). “Characteristics of Hybrid Alkaline Cement Composite with High Cement Content: Flash Set and High Compressive Strength”. Journal of Materials Research and Technology (17) 1582 1597.

Ray, S., Haque, M., Rahman, M.M., Sakib, M. N., & Rakib, K. A. (2021). “Experimental investigation and SVM-based prediction of compressive and splitting tensile strength of ceramic waste aggregate concrete”. Journal of King Saud University – Engineering Sciences, https://doi.org/10.1016/j.jksues.2021.08.010.

Sabih G., Tarefder R. A., and Jamil S. M. (2016). “Optimization of Gradation and Fine Modulus of Naturally Fine Sands for Improved Performance as Fine Aggregate in Concrete”. Procedia Engineering (145) 66-73, https://doi.org/10.1016/j.proeng.2016.04.016.

Sahoo A. K., and Kar B. B. (2021). “Water Absorptivity and its Impact on Various Properties of the Concrete Materials. Materials Today: Proceeding, https://doi.org/10.1016/j.matpr.2021.01.474.

Sithole, N. T., Tsotetsi, N. T., Mashifana, T., & Sillanpaa. M. (2022). “Alternative cleaner production of sustainable concrete from waste foundry sand and slag”. Journal of Cleaner Production (336) 130399, https://doi.org/10.1016/j.clepro.2022.130399.

Syahrul., Tjaronge M. W., Djamaluddin R., Amiruddin. A. A. (2021).Flexural Behavior of Normal and Lightweight Concrete Composite Beam”. Civil Engineering Journal, e-ISSN: 2476-3055, Vol 7, No 03, March, http://dx.doi.org/10.28991/cej-2021-03091673.

Tangaramvong, S., Nuaklong, P., Khine, M. T., & Jongvivatsakul, P. (2021). “The influences of granite industry waste on concrete properties with different strength grades”. Case Studies in Construction Materials (15) e00669, https://doi.org/10.1016/j.cscm.2021.e00669.

Wang, B., Yan, L., Fu, Q., & Kasal, B. (2021). “A comprehensive review on recycled aggregate and recycled aggregate concrete”. Resources, Conservation & Recycling (171) 105565, https://doi.org/10.1016/j.resconrec.2021.105565.

Yan W., Cui W., and Qi L. (2020). “Effect of Aggregate Gradation and Mortar Rheology on Static Segregation of Self-Compaction Concrete”. Construction and Building Materials (259) 119816, https://doi.org/10.1016/j.conbuildmat.2020.119816.

Zaccardi, Y. A. V., Marsh, A. T. M., Sosa, M. E., Zega, C. J., Belie, N. D., & Bernal, S. A. (2022). “Complete re-utilization of waste concretes-valorisation pathways and research needs”. Resources, Conservation & Recycling (177) 105955, https://doi.org/10.1016/j.resconrec.2021.105955.

Zhu L., Zhao C., and Dai J. (2020). Prediction of Compressive Strength of Recycled Aggregate Concrete Based on Gray Correlation Analysis”. Construction and Building Materials (273) 121750, https://doi.org/10.106/j.conbuildmat.2020.121750.

Refbacks

  • There are currently no refbacks.