TINGKAT KEDEWASAAN PENERAPAN BIM PADA KONTRAKTOR JEMBATAN DI INDONESIA

Widi Hartono, Dewi Handayani, Syafi'i Syafi'i

Abstract

Perkembangan konstruksi di Indonesia berkembang cukup pesat, pembangunan infrastruktur meningkat 6 tahun terakhir termasuk didalamnya adalah konstruski jembatan. Jembatan merupakan konstruksi yang digunakan untuk melewati rintangan seperti sungai, danau, jalan raya, jalan kereta api atau lembah. Konstruksi jembatan ini banyak ditemui pada pembangunan jalan tol dimana konstruski ini sangat vital untuk menghubungkan dua sisi yang dipisah oleh rintangan. Selain itu jembatan juga banyak kita pada jalan non tol. Di Indonesia teknologi BIM mulai berkembang, beberapa kajian sudah dilakukan baik oleh pemerintah atau swasta untuk memberikan pembelajaran dan pengembangan BIM. Aplikasi BIM sudah mulai dilakukan untuk bangunan gedung baik untuk tahap perencanaan, konstruksi dan operasi dan maintenance. Dalam penelitian ini akan mengkaji penerapan konsep BIM yang sudah dilaksanakan khususnya untuk perencanaan konstruksi jembatan. Analisis dalam penelitian ini menggunakan indeks kedewasaan penerapan BIM untuk mengetahui seberapa jauh peneran BIM dalam proyek jembatan. Selain itu juga dilakukan identifikasi terhadap permasalahan atau hambatan dalam penerapan teknologi BIM. Hasil kajian menunjukkan bahwa penerapan teknologi BIM pada kontraktor masih terbatas pada penggunaan CAD 2D dan 3D dalam desain yang dikerjakannya. Beberapa kendala dihadapi oleh tenaga ahli terkait dengan software, hardware, jaringan komputer dan kesulitan dalam perencanaan dengan BIM. Penerapan teknologi BIM pada perusahaan kontraktor adalah pada level 1 dengan skor 1.16. Pada level ini penerapan teknologi BIM masih didominasi oleh pengelolaan desain berbasis file.

Full Text:

PDF

References

Al-Ashmori, Y. Y., Othman, I., Rahmawati, Y., Amran, Y. H. M., Sabah, S. H. A., Rafindadi, A. D. u., & Mikić, M. (2020). BIM benefits and its influence on the BIM implementation in Malaysia. Ain Shams Engineering Journal, 11, 1013–1019. https://doi.org/10.1016/j.asej.2020.02.002 Alfa, A. (2018). Industri Konstruksi Di Era Industri 4.0. Selodang Mayang, 4(3), 166–173. https://ojs.selodangmayang.com/index.php/bappeda/article/view/107 Babatunde, S., Ekundayo, D., & Adek unle, A. (2019). An alysis of BIM maturity level amon AEC firms in developing countries : a case of Nigeria. University of Salford. http://usir.salford.ac.uk/id/eprint/52869/ Bew, M., & Richards, M. (2008). Bew-Richards BIM maturity model. BuildingSMART Construct IT Autumn Members Meeting. Braun, A., & Borrmann, A. (2019). Combining inverse photogrammetry and BIM for automated labeling of construction site images for machine learning. Automation in Construction, 106(January), 102879. https://doi.org/10.1016/j.autcon.2019.102879 Brilakis, I., Fathi, H., & Rashidi, A. (2011). Progressive 3D reconstruction of infrastructure with videogrammetry. Automation in Construction, 20(7), 884–895. https://doi.org/10.1016/j.autcon.2011.03.005 Bui, N., Merschbrock, C., & Munkvold, B. E. (2016). A Review of Building Information Modelling for Construction in Developing Countries. Procedia Engineering, 164(1877), 487–494. https://doi.org/10.1016/j.proeng.2016.11.649 Chen, C., & Tang, L. (2019). BIM-based integrated management workflow design for schedule and cost planning of building fabric maintenance. Automation in Construction, 107(February), 102944. https://doi.org/10.1016/j.autcon.2019.102944 Chen, K., Lu, W., Peng, Y., Rowlinson, S., & Huang, G. Q. (2015). Bridging BIM and building: From a literature review to an integrated conceptual framework. International Journal of Project Management, 33(6), 1405–1416. https://doi.org/10.1016/j.ijproman.2015.03.006 Chen, W., Chen, K., Cheng, J. C. P., Wang, Q., & Gan, V. J. L. (2018). BIM-based framework for automatic scheduling of facility maintenance work orders. Automation in Construction, 91(March), 15–30. https://doi.org/10.1016/j.autcon.2018.03.007 Dakhi, A., Alshawi, M., & Underwood. (2015). BIM Client Maturity: Literature Review. 12th International Post-Graduate Research Conference 2015, 10-12 June, 229–238. https://www.researchgate.net/publication/279293516_BIM_Client_Maturity_Literature_Review Davila Delgado, J. M., Oyedele, L., Demian, P., & Beach, T. (2020). A research agenda for augmented and virtual reality in architecture, engineering and construction. Advanced Engineering Informatics, 45(December 2019), 101122. https://doi.org/10.1016/j.aei.2020.101122 Dubas, S., & Pasławski, J. (2017). The concept of improving communication in BIM during transfer to operation phase on the Polish market. Procedia Engineering, 208, 14–19. https://doi.org/10.1016/j.proeng.2017.11.015 El-Omari, S., & Moselhi, O. (2008). Integrating 3D laser scanning and photogrammetry for progress measurement of construction work. Automation in Construction, 18(1), 1–9. https://doi.org/10.1016/j.autcon.2008.05.006 Ervianto, W. I. (2017). Tantangan Pembangunan Infrastruktur dalam Proyek Strategis Nasional Indonesia. Simposium II UNIID 2017, 2(1), 98–103. Garbett, J., Hartley, T., & Heesom, D. (2021). A multi-user collaborative BIM-AR system to support design and construction. Automation in Construction, 122(October 2020), 103487. https://doi.org/10.1016/j.autcon.2020.103487 Han, K. K., Cline, D., & Golparvar-Fard, M. (2015). Formalized knowledge of construction sequencing for visual monitoring of work-in-progress via incomplete point clouds and low-LoD 4D BIMs. Advanced Engineering Informatics, 29(4), 889–901. https://doi.org/10.1016/j.aei.2015.10.006 Hasik, V., Escott, E., Bates, R., Carlisle, S., Faircloth, B., & Bilec, M. M. (2019). Comparative whole-building life cycle assessment of renovation and new construction. Building and Environment, 161(May), 106218. https://doi.org/10.1016/j.buildenv.2019.106218 Hsu, H. C., Chang, S., Chen, C. C., & Wu, I. C. (2020). Knowledge-based system for resolving design clashes in building information models. Automation in Construction, 110(December 2019), 103001. https://doi.org/10.1016/j.autcon.2019.103001 Hu, Y., Castro-Lacouture, D., & Eastman, C. M. (2019). Holistic clash detection improvement using a component dependent network in BIM projects. Automation in Construction, 105(February), 102832. https://doi.org/10.1016/j.autcon.2019.102832 Jiang, K., Yang, Y., & Zhang, K. (2020). Research on the Framework of the Collaborative Management Platform for the Reconstruction of Bridge Projects during Construction Based on BIM. IOP Conference Series: Earth and Environmental Science, 568(1). https://doi.org/10.1088/1755-1315/568/1/012017 Joblot, L., Paviot, T., Deneux, D., & Lamouri, S. (2019). Building Information Maturity Model specific to the renovation sector. Automation in Construction, 101(January), 140–159. https://doi.org/10.1016/j.autcon.2019.01.019 Kim, H., & Kano, N. (2005). Comparison of construction photograph and VR image in construction progress. 22nd International Symposium on Automation and Robotics in Construction, ISARC 2005, 3–4. https://doi.org/10.22260/isarc2005/0027 Liu, J., Liu, P., Feng, L., Wu, W., Li, D., & Chen, F. (2020). Towards automated clash resolution of reinforcing steel design in reinforced concrete frames via Q-learning and building information modeling. Automation in Construction, 112(December 2019), 103062. https://doi.org/10.1016/j.autcon.2019.103062 Lu, R., & Brilakis, I. (2019). Digital twinning of existing reinforced concrete bridges from labelled point clusters. Automation in Construction, 105(February), 102837. https://doi.org/10.1016/j.autcon.2019.102837 Manyijka, J., Chui, M., Bughin, J., George, K., Willmott, P., & Dewhurst, M. (2017). A Future That Woks: Automation, Emoployement, And Productivity. McKinsey Global Institution, January, 1–28. Mashayekhi, A., & Heravi, G. (2020). A decision-making framework opted for smart building’s equipment based on energy consumption and cost trade-off using BIM and MIS. Journal of Building Engineering, 32(July), 101653. https://doi.org/10.1016/j.jobe.2020.101653 Matějka, P., Kosina, V., Tomek, A., Tomek, R., Berka, V., & Šulc, D. (2016). The Integration of BIM in Later Project Life Cycle Phases in Unprepared Environment from FM Perspective. Procedia Engineering, 164, 550–557. https://doi.org/10.1016/j.proeng.2016.11.657 Matějka, P., & Tomek, A. (2017). Ontology of BIM in a Construction Project Life Cycle. Procedia Engineering, 196(June), 1080–1087. https://doi.org/10.1016/j.proeng.2017.08.065 Miettinen, R., & Paavola, S. (2014). Beyond the BIM utopia: Approaches to the development and implementation of building information modeling. Automation in Construction, 43, 84–91. https://doi.org/10.1016/j.autcon.2014.03.009 Migilinskas, D., Popov, V., Juocevicius, V., & Ustinovichius, L. (2013). The benefits, obstacles and problems of practical bim implementation. Procedia Engineering, 57, 767–774. https://doi.org/10.1016/j.proeng.2013.04.097 Omar, T., & Nehdi, M. L. (2016). Data acquisition technologies for construction progress tracking. Automation in Construction, 70, 143–155. https://doi.org/10.1016/j.autcon.2016.06.016 Pan, Y., & Zhang, L. (2020). BIM log mining: Exploring design productivity characteristics. Automation in Construction, 109(November 2019). https://doi.org/10.1016/j.autcon.2019.102997 Pärn, E. A., Edwards, D. J., & Sing, M. C. P. (2018). Origins and probabilities of MEP and structural design clashes within a federated BIM model. Automation in Construction, 85(September 2017), 209–219. https://doi.org/10.1016/j.autcon.2017.09.010 Pour Rahimian, F., Seyedzadeh, S., Oliver, S., Rodriguez, S., & Dawood, N. (2020). On-demand monitoring of construction projects through a game-like hybrid application of BIM and machine learning. Automation in Construction, 110(November 2019), 103012. https://doi.org/10.1016/j.autcon.2019.103012 Pučko, Z., Šuman, N., & Rebolj, D. (2018). Automated continuous construction progress monitoring using multiple workplace real time 3D scans. Advanced Engineering Informatics, 38(June), 27–40. https://doi.org/10.1016/j.aei.2018.06.001 Rebolj, D., Pučko, Z., Babič, N. Č., Bizjak, M., & Mongus, D. (2017). Point cloud quality requirements for Scan-vs-BIM based automated construction progress monitoring. Automation in Construction, 84(September), 323–334. https://doi.org/10.1016/j.autcon.2017.09.021 Retik, A., & Shapira, A. (1999). VR-based planning of construction site activities. Automation in Construction, 8(6), 671–680. https://doi.org/10.1016/S0926-5805(98)00113-7 Santos, R., Costa, A. A., Silvestre, J. D., Vandenbergh, T., & Pyl, L. (2020). BIM-based life cycle assessment and life cycle costing of an office building in Western Europe. Building and Environment, 169(November 2019). https://doi.org/10.1016/j.buildenv.2019.106568 Shahi, A., Aryan, A., West, J. S., Haas, C. T., & Haas, R. C. G. (2012). Deterioration of UWB positioning during construction. Automation in Construction, 24, 72–80. https://doi.org/10.1016/j.autcon.2012.02.009 Soeparto, H. G., & Trigunansyah, B. (2005). Industri konstruksi Indonesia: Masa depan dan tantangannya. Peringatan 25 Tahun Pendidikan MRK Di Indonesia, January 2005, 1–9. Solla, M., Bakar, M. Q., Ismail, L. H., & Abass, F. (2016). Investigation on the Level of Building Information Modeling ( BIM ) Uses in Preconstruction Phase. September. Valero, E., & Adán, A. (2016). Integration of RFID with other technologies in construction. Measurement: Journal of the International Measurement Confederation, 94, 614–620. https://doi.org/10.1016/j.measurement.2016.08.037 van den Ende, L., & van Marrewijk, A. (2014). The ritualization of transitions in the project life cycle: A study of transition rituals in construction projects. International Journal of Project Management, 32(7), 1134–1145. https://doi.org/10.1016/j.ijproman.2014.02.007 Xu, X., Ma, L., & Ding, L. (2014). A framework for BIM-enabled life-cycle information management of construction project. International Journal of Advanced Robotic Systems, 11(1), 1–13. https://doi.org/10.5772/58445 Yang, T., & Liao, L. (2016). Research on Building Information Model (BIM) Technology. World Construction, 5(1), 1. https://doi.org/10.18686/wcj.v5i1.1 Yoo, W., Kim, H., & Shin, M. (2020). Stations-oriented indoor localization (SOIL): A BIM-Based occupancy schedule modeling system. Building and Environment, 168(November 2019), 106520. https://doi.org/10.1016/j.buildenv.2019.106520 Yu, Q., Li, K., & Luo, H. (2016). A BIM-based Dynamic Model for Site Material Supply. Procedia Engineering, 164(June), 526–533. https://doi.org/10.1016/j.proeng.2016.11.654

Refbacks

  • There are currently no refbacks.