Caesalpinia sappan Reduce Fever with An Anti-inflammatory and Antioxidant Mechanism: A Review

Heru Sasongko, Delia Putri Hedianti, Listiyana Ika Safitri

Abstract

Caesalpinia sappan L (Sappan wood) is an herbal plant that has long been trusted by the public as an herbal medicine for tuberculosis, diarrhea, dysentery, skin infections, anemia, and other diseases by utilizing the decoction of C.sappan. Sappan wood is an herbal plant widely used as a raw material for traditional medicinal products. Sappan wood has been reported to have substantial pharmacological effects in analgesic, antioxidant, antibacterial, anti-inflammatory, and anti-viral. Fever is a clinical manifestation of certain conditions or diseases characterized by increased body temperature above the normal range (36.5–37.5 °C). Many studies declare that antioxidant and anti-inflammatory activity in C.sappan reduces oxidative stress and pro-inflammatory cytokines. This literature review shows that the antioxidant and anti-inflammatory properties of C.sappan are linked to fever as a sign of illness. Literature review using the last ten years' Scopus, ScienceDirect, and Pubmed databases. There are as many as 20 journals regarding sappan wood's antioxidant and anti-inflammatory effects. Sappan wood has been shown to have an antioxidant effect by lowering reactive oxygen species levels via SOD, GPx, or CAT markers. It inhibits inflammation cytokines such as IL-1, IL-6, TNF-𝝰, and INF produced during fever. Sappan wood also has an anti-inflammatory effect by inhibiting PGE2 production when someone has a fever. The findings of our review state that C.sappan can be used to treat fever for both of these reasons. The use of C.sappan as a component in producing traditional health beverages has potential.

Keywords

Anti-inflammatory; Antioxidant; Caesalpinia sappan; Fever; Herbs

Full Text:

PDF

References

Abdulkhaleq, L. A., Assi, M. A., Abdullah, R., Zamri-Saad, M., Taufiq-Yap, Y. H., & Hezmee, M. N. M. (2018). The crucial roles of inflammatory mediators in inflammation: A review. Veterinary World, 11(5), 627–635. https://doi.org/10.14202/vetworld.2018.627-635

Aldini, G., Altomare, A., Baron, G., Vistoli, G., Carini, M., Borsani, L., & Sergio, F. (2018). N-Acetylcysteine as an antioxidant and disulphide breaking agent: The reasons why. Free Radical Research, 52(7), 751–762. https://doi.org/10.1080/10715762.2018.1468564

Andrews, P. J. D., Verma, V., Healy, M., Lavinio, A., Curtis, C., Reddy, U., Andrzejowski, J., Foulkes, A., & Canestrini, S. (2018). Targeted temperature management in patients with intracerebral haemorrhage, subarachnoid haemorrhage, or acute ischaemic stroke: Consensus recommendations. British Journal of Anaesthesia, 121(4), Article 4. https://doi.org/10.1016/j.bja.2018.06.018

Arsiningtyas, I. S. (2021). Antioxidant Profile of Heartwood and Sapwood of Caesalpinia sappan L. Tree’s Part Grown in Imogiri Nature Preserve, Yogyakarta. IOP Conference Series: Earth and Environmental Science, 810(1), Article 1. https://doi.org/10.1088/1755-1315/810/1/012040

Azab, A., Nassar, A., & Azab, A. N. (2016). Anti-Inflammatory Activity of Natural Products. Molecules, 21(10), 1321. https://doi.org/10.3390/molecules21101321

Cann, S. A. H. (2021). Fever: Could A Cardinal Sign of COVID-19 Infection Reduce Mortality? The American Journal of the Medical Sciences, 361(4), 420–426. https://doi.org/10.1016/j.amjms.2021.01.004

Chen, C.-L., & Zhang, D.-D. (2014). Anti-inflammatory effects of 81 chinese herb extracts and their correlation with the characteristics of traditional chinese medicine. Evidence-Based Complementary and Alternative Medicine: eCAM, 2014, 985176. https://doi.org/10.1155/2014/985176

Chen, F.-Z., Zhao, Q., Yan, J., Guo, X.-Q., Song, Q., Yao, Q., & Gou, X.-J. (2014). Antioxidant Activity and Antioxidant Mechanism of Brazilin and Neoprotosappanin from Caesalpinia sappan Lignum. Asian Journal of Chemistry, 26(16), Article 16. https://doi.org/10.14233/ajchem.2014.16282

Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X., & Zhao, L. (2017). Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 9(6), 7204–7218. https://doi.org/10.18632/oncotarget.23208

Chen, Y.-N., Huang, T.-F., Chang, C.-H., Hsu, C.-C., Lin, K.-T., Wang, S.-W., Peng, H.-C., & Chung, C.-H. (2012). Antirestenosis Effect of Butein in the Neointima Formation Progression. Journal of Agricultural and Food Chemistry, 60(27), 6832–6838. https://doi.org/10.1021/jf300771x

Chu, M.-J., Wang, Y.-Z., Itagaki, K., Ma, H.-X., Xin, P., Zhou, X.-G., Chen, G.-Y., Li, S., & Sun, S.-Q. (2013). Identification of active compounds from Caesalpinia sappan L. extracts suppressing IL-6 production in RAW 264.7 cells by PLS. Journal of Ethnopharmacology, 148(1), 37–44. https://doi.org/10.1016/j.jep.2013.03.050

Chunlian Tian, Xin Liu, Yu Chang, Ruxia Wang, Tianmeng Lv, Cancan Cui, & Mingchun Liu. (2021). Investigation of the anti-inflammatory and antioxidant activities of luteolin, kaempferol, apigenin and quercetin. South African Journal of Botany, 137, 257–264. https://doi.org/10.1016/j.sajb.2020.10.022

DeMeo, S. D., Raman, S. R., Hornik, C. P., Wilson, C. C., Clark, R., & Smith, P. B. (2015). Adverse Events After Routine Immunization of Extremely Low-Birth-Weight Infants. JAMA Pediatrics, 169(8), 740–745. https://doi.org/10.1001/jamapediatrics.2015.0418

Derindağ, G., Akgül, H. M., Kızıltunç, A., Özkan, H. İ., Kızıltunç Özmen, H., & Akgül, N. (2021). Evaluation of saliva glutathione, glutathione peroxidase, and malondialdehyde levels in head-neck radiotherapy patients. Turkish Journal of Medical Sciences, 51(2), 644–649. https://doi.org/10.3906/sag-2006-84

Dias, M. C., Pinto, D. C. G. A., & Silva, A. M. S. (2021). Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules, 26(17), 5377. https://doi.org/10.3390/molecules26175377

Drożdżal, S., Lechowicz, K., Szostak, B., Rosik, J., Kotfis, K., Machoy-Mokrzyńska, A., Białecka, M., Ciechanowski, K., & Gawrońska-Szklarz, B. (2021). Kidney damage from nonsteroidal anti-inflammatory drugs-Myth or truth? Review of selected literature. Pharmacology Research & Perspectives, 9(4), Article 4. https://doi.org/10.1002/prp2.817

Gao, X., Wang, T., Zhang, Z., Cao, Y., Zhang, N., & Guo, M. (2015). Brazilin plays an anti-inflammatory role with regulating Toll-like receptor 2 and TLR 2 downstream pathways in Staphylococcus aureus-induced mastitis in mice. International Immunopharmacology, 27(1), Article 1. https://doi.org/10.1016/j.intimp.2015.04.043

Gulcin, İ. (2020). Antioxidants and antioxidant methods: An updated overview. Archives of Toxicology, 94(3), 651–715. https://doi.org/10.1007/s00204-020-02689-3

Handayani, S., Susidarti, R. A., Jenie, R. I., & Meiyanto, E. (2017). Two Active Compounds from Caesalpinia sappan L. in Combination with Cisplatin Synergistically Induce Apoptosis and Cell Cycle Arrest on WiDr Cells. Advanced Pharmaceutical Bulletin, 7(3), 375–380. https://doi.org/10.15171/apb.2017.045

Hanna, V. S., & Hafez, E. A. A. (2018). Synopsis of arachidonic acid metabolism: A review. Journal of Advanced Research, 11, 23–32. https://doi.org/10.1016/j.jare.2018.03.005

Hwang, H. S., & Shim, J. H. (2018). Brazilin and Caesalpinia sappan L. extract protect epidermal keratinocytes from oxidative stress by inducing the expression of GPX7. Chinese Journal of Natural Medicines, 16(3), 203–209. https://doi.org/10.1016/S1875-5364(18)30048-7

Javed, F., Jabeen, Q., Aslam, N., & Awan, A. M. (2020). Pharmacological evaluation of analgesic, anti-inflammatory and antipyretic activities of ethanolic extract of Indigofera argentea Burm. F. Journal of Ethnopharmacology, 259, 112966. https://doi.org/10.1016/j.jep.2020.112966

Jeong, G.-S., Lee, D.-S., Li, B., Lee, H.-J., Kim, E.-C., & Kim, Y.-C. (2010). Effects of sappanchalcone on the cytoprotection and anti-inflammation via heme oxygenase-1 in human pulp and periodontal ligament cells. European Journal of Pharmacology, 644(1–3), 230–237. https://doi.org/10.1016/j.ejphar.2010.06.059

Jung, E.-G., Han, K.-I., Hwang, S. G., Kwon, H.-J., Patnaik, B. B., Kim, Y. H., & Han, M.-D. (2015). Brazilin isolated from Caesalpinia sappan L. inhibits rheumatoid arthritis activity in a type-II collagen induced arthritis mouse model. BMC Complementary and Alternative Medicine, 15, 124. https://doi.org/10.1186/s12906-015-0648-x

Jung, E.-G., Han, K.-I., Kwon, H.-J., Patnaik, B. B., Kim, W.-J., Hur, G. M., Nam, K.-W., & Han, M.-D. (2015). Anti-inflammatory activity of sappanchalcone isolated from Caesalpinia sappan L. in a collagen-induced arthritis mouse model. Archives of Pharmacal Research, 38(6), Article 6. https://doi.org/10.1007/s12272-015-0557-z

Csepregi, K., Neugart, S., Schreiner, M., & Hideg, É. (2016). Comparative Evaluation of Total Antioxidant Capacities of Plant Polyphenols. Molecules (Basel, Switzerland), 21(2). https://doi.org/10.3390/molecules21020208

Kadir, F. A., Kassim, N. M., Abdulla, M. A., Kamalidehghan, B., Ahmadipour, F., & Yehye, W. A. (2014). PASS-predicted hepatoprotective activity of Caesalpinia sappan in thioacetamide-induced liver fibrosis in rats. TheScientificWorldJournal, 2014, 301879. https://doi.org/10.1155/2014/301879

Kallinich, T., Gattorno, M., Grattan, C. E., de Koning, H. D., Traidl-Hoffmann, C., Feist, E., Krause, K., Lipsker, D., Navarini, A. A., Maurer, M., Lachmann, H. J., & Simon, A. (2013). Unexplained recurrent fever: When is autoinflammation the explanation? Allergy, 68(3), 285–296. https://doi.org/10.1111/all.12084

Kang, L., Zhao, H., Chen, C., Zhang, X., Xu, M., & Duan, H. (2016). Sappanone A protects mice against cisplatin-induced kidney injury. International Immunopharmacology, 38, 246–251. https://doi.org/10.1016/j.intimp.2016.05.019

Khristian, E., Safitri, R., Ghozali, M., & Bashari, M. H. (2022). Effect of Chronic Toxicity Studies of Sappan Wood Extract on The Kupffer Cells Number in Rats (Rattus novergicus). HAYATI Journal of Biosciences, 29(5), Article 5. https://doi.org/10.4308/hjb.29.5.695-700

Kim, J.-H., Choo, Y.-Y., Tae, N., Min, B.-S., & Lee, J.-H. (2014). The anti-inflammatory effect of 3-deoxysappanchalcone is mediated by inducing heme oxygenase-1 via activating the AKT/mTOR pathway in murine macrophages. International Immunopharmacology, 22(2), Article 2. https://doi.org/10.1016/j.intimp.2014.07.025

Kim, K.-J., Yoon, K.-Y., Yoon, H.-S., Oh, S.-R., & Lee, B.-Y. (2015). Brazilein Suppresses Inflammation through Inactivation of IRAK4-NF-κB Pathway in LPS-Induced Raw264.7 Macrophage Cells. International Journal of Molecular Sciences, 16(11), 27589–27598. https://doi.org/10.3390/ijms161126048

Kong, Y., Tian, J., Niu, X., Li, M., Kong, Y., Li, R., Chen, X., & Wang, G. (2022). Effects of dietary quercetin on growth, antioxidant capacity, immune response and immune-related gene expression in snakehead fish, Channa argus. Aquaculture Reports, 26, 101314. https://doi.org/10.1016/j.aqrep.2022.101314

Kooti, W., & Daraei, N. (2017). A Review of the Antioxidant Activity of Celery (Apium graveolens L). Journal of Evidence-Based Complementary & Alternative Medicine, 22(4), 1029–1034. https://doi.org/10.1177/2156587217717415

Kurita, T., Ishida, K., Muranaka, E., Sasazawa, H., Mito, H., Yano, Y., & Hase, R. (2020). A Favipiravir-induced Fever in a Patient with COVID-19. Internal Medicine, 59(22), 2951–2953. https://doi.org/10.2169/internalmedicine.5394-20

Liang, C.-H., Chan, L.-P., Chou, T.-H., Chiang, F.-Y., Yen, C.-M., Chen, P.-J., Ding, H.-Y., & Lin, R.-J. (2013a). Brazilein from Caesalpinia sappan L. Antioxidant Inhibits Adipocyte Differentiation and Induces Apoptosis through Caspase-3 Activity and Anthelmintic Activities against Hymenolepis nana and Anisakis simplex. Evidence-Based Complementary and Alternative Medicine: eCAM, 2013, 864892. https://doi.org/10.1155/2013/864892

Liang, C.-H., Chan, L.-P., Chou, T.-H., Chiang, F.-Y., Yen, C.-M., Chen, P.-J., Ding, H.-Y., & Lin, R.-J. (2013b). Brazilein from Caesalpinia sappan L. Antioxidant Inhibits Adipocyte Differentiation and Induces Apoptosis through Caspase-3 Activity and Anthelmintic Activities against Hymenolepis nana and Anisakis simplex. Evidence-Based Complementary and Alternative Medicine: eCAM, 2013, 864892. https://doi.org/10.1155/2013/864892

Lu, W., Shi, Y., Wang, R., Su, D., Tang, M., Liu, Y., & Li, Z. (2021). Antioxidant Activity and Healthy Benefits of Natural Pigments in Fruits: A Review. International Journal of Molecular Sciences, 22(9), 4945. https://doi.org/10.3390/ijms22094945

Maleki, S. J., Crespo, J. F., & Cabanillas, B. (2019). Anti-inflammatory effects of flavonoids. Food Chemistry, 299, 125124. https://doi.org/10.1016/j.foodchem.2019.125124

Masturi, Alighiri, D., Edie, S. S., Hanisyifa, U., & Drastisianti, A. (2021). Determination of Total Phenol and Flavonoid Contents and Antioxidant Activity from Extract Fraction of Sappan Wood (Caesalpinia sappan L.) by Liquid-Liquid Extraction and Vacuum Liquid Chromatography. Asian Journal of Chemistry, 33(8), Article 8.

Mendonça, J. da S., Guimarães, R. de C. A., Zorgetto-Pinheiro, V. A., Fernandes, C. D. P., Marcelino, G., Bogo, D., Freitas, K. de C., Hiane, P. A., de Pádua Melo, E. S., Vilela, M. L. B., & do Nascimento, V. A. (2022). Natural Antioxidant Evaluation: A Review of Detection Methods. Molecules, 27(11), 3563. https://doi.org/10.3390/molecules27113563

Mithun Singh Rajput, Nilesh Prakash Nirmal, Srushti Jagdish Nirmal, & Chalat Santivarangkna. (2021). Bio-actives from Caesalpinia sappan Linn: Recent advancements in phytochemistry and pharmacology. South African Journal of Botany. https://doi.org/10.1016/j.sajb.2021.11.021

Mosili, P., Maikoo, S., Mabandla, M., Vuyisile, & Qulu, L. (2020a). The Pathogenesis of Fever-Induced Febrile Seizures and Its Current State. Neuroscience Insights, 15, 2633105520956973. https://doi.org/10.1177/2633105520956973

Mosili, P., Maikoo, S., Mabandla, M., Vuyisile, & Qulu, L. (2020b). The Pathogenesis of Fever-Induced Febrile Seizures and Its Current State. Neuroscience Insights, 15, 2633105520956973. https://doi.org/10.1177/2633105520956973

Mota, C. M. D., & Madden, C. J. (2022). Neural circuits mediating circulating interleukin-1β-evoked fever in the absence of prostaglandin E2 production. Brain, Behavior, and Immunity, 103, 109–121. https://doi.org/10.1016/j.bbi.2022.04.008

Mueller, M., Weinmann, D., Toegel, S., Holzer, W., M. Unger, F., & Viernstein, H. (2016). Compounds from Caesalpinia sappan with anti-inflammatory properties in macrophages and chondrocytes. Food & Function, 7(3), 1671–1679. https://doi.org/10.1039/C5FO01256B

Nakamura, Y., Nakanishi, T., Shimada, H., Shimizu, J., Aotani, R., Maruyama, S., Higuchi, K., Okura, T., Deguchi, Y., & Tamai, I. (2018). Prostaglandin Transporter OATP2A1/SLCO2A1 Is Essential for Body Temperature Regulation during Fever. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 38(24), 5584–5595. https://doi.org/10.1523/JNEUROSCI.3276-17.2018

Nirmal, N. P., & Panichayupakaranant, P. (2015). Antioxidant, antibacterial, and anti-inflammatory activities of standardized brazilin-rich Caesalpinia sappan extract. Pharmaceutical Biology, 53(9), Article 9. https://doi.org/10.3109/13880209.2014.982295

Nirmal, N. P., Rajput, M. S., Prasad, R. G. S. V., & Ahmad, M. (2015). Brazilin from Caesalpinia sappan heartwood and its pharmacological activities: A review. Asian Pacific Journal of Tropical Medicine, 8(6), 421–430. https://doi.org/10.1016/j.apjtm.2015.05.014

Ohemeng, F., Ayivor, J. S., Lawson, E. T., & Ntiamoa-Baidu, Y. (2018). Local classifications of fever and treatment sought among populations at risk of zoonotic diseases in Ghana. PLOS ONE, 13(8), e0201526. https://doi.org/10.1371/journal.pone.0201526

Padmavathi, G., Roy, N. K., Bordoloi, D., Arfuso, F., Mishra, S., Sethi, G., Bishayee, A., & Kunnumakkara, A. B. (2017). Butein in health and disease: A comprehensive review. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 25, 118–127. https://doi.org/10.1016/j.phymed.2016.12.002

Paquet, D., Jung, L., Trawinski, H., Wendt, S., & Lübbert, C. (2022). Fever in the Returning Traveler. Deutsches Ärzteblatt International, 119(22–23), 400–407. https://doi.org/10.3238/arztebl.m2022.0182

Pascarella, G., Strumia, A., Piliego, C., Bruno, F., Del Buono, R., Costa, F., Scarlata, S., & Agrò, F. E. (2020). COVID-19 diagnosis and management: A comprehensive review. Journal of Internal Medicine, 288(2), 192–206. https://doi.org/10.1111/joim.13091

Pasikhova, Y., Ludlow, S., & Baluch, A. (2017). Fever in Patients With Cancer. Cancer Control: Journal of the Moffitt Cancer Center, 24(2), 193–197. https://doi.org/10.1177/107327481702400212

Pattananandecha, T., Apichai, S., Julsrigival, J., Ogata, F., Kawasaki, N., & Saenjum, C. (2022). Antibacterial Activity against Foodborne Pathogens and Inhibitory Effect on Anti-Inflammatory Mediators’ Production of Brazilin-Enriched Extract from Caesalpinia sappan Linn. Plants, 11(13), Article 13. https://doi.org/10.3390/plants11131698

Peluso, L., Abella, B. S., Ferrer, R., Kucher, N., Sunde, K., & Taccone, F. S. (2021). Fever management in COVID-19 patients. Minerva Anestesiologica, 87(1), 1–3. https://doi.org/10.23736/S0375-9393.20.15195-2

Prajitha, N., Athira, S., & Mohanan, P. (2018a). Pyrogens, a polypeptide produces fever by metabolic changes in hypothalamus: Mechanisms and detections. Immunology Letters, 204, 38–46. https://doi.org/10.1016/j.imlet.2018.10.006

Prajitha, N., Athira, S., & Mohanan, P. (2018b). Pyrogens, a polypeptide produces fever by metabolic changes in hypothalamus: Mechanisms and detections. Immunology Letters, 204, 38–46. https://doi.org/10.1016/j.imlet.2018.10.006

Romruen, O., Kaewprachu, P., Karbowiak, T., & Rawdkuen, S. (2022a). Development of Intelligent Gelatin Films Incorporated with Sappan (Caesalpinia sappan L.) Heartwood Extract. Polymers, 14(12), 2487. https://doi.org/10.3390/polym14122487

Romruen, O., Kaewprachu, P., Karbowiak, T., & Rawdkuen, S. (2022b). Development of Intelligent Gelatin Films Incorporated with Sappan (Caesalpinia sappan L.) Heartwood Extract. Polymers, 14(12), Article 12. https://doi.org/10.3390/polym14122487

Sakti, A. S., Saputri, F. C., & Mun’im, A. (2019). Optimization of choline chloride-glycerol based natural deep eutectic solvent for extraction bioactive substances from Cinnamomum burmannii barks and Caesalpinia sappan heartwoods. Heliyon, 5(12), e02915. https://doi.org/10.1016/j.heliyon.2019.e02915

Sannasimuthu, A., & Arockiaraj, J. (2019). Intracellular free radical scavenging activity and protective role of mammalian cells by antioxidant peptide from thioredoxin disulfide reductase of Arthrospira platensis. Journal of Functional Foods, 61, 103513. https://doi.org/10.1016/j.jff.2019.103513

Sasongko, H. (2017). In vivo analgesic effect of ethanolic extracts of exocarp, mesocarp, and seeds of Carica pubescens. Unity in Diversity and the Standardisation of Clinical Pharmacy Services: Proceedings of the 17th Asian Conference on Clinical Pharmacy (ACCP 2017), July 28-30, 2017, Yogyakarta, Indonesia, 271.

Sasongko, H., Sugiyarto, S., Efendi, N. R., Pratiwi, D., Setyawan, A. D., & Widiyani, T. (2016). Analgesic Activity of Ethanolic Extracts of Karika Leaves (Carica pubescens) In Vivo. Journal of Pharmaceutical Science and Clinical Research, 1(2), 83–89. https://doi.org/10.20961/jpscr.v1i2.1938

Sasongko, H., Widiasih, P., & Putri, N. L. (2019). Antipyretic properties of carica (Vasconcellea pubescens A.DC.) fruit and seeds ethanolic extract in experimental animals. IOP Conference Series: Materials Science and Engineering, 578, 012044. https://doi.org/10.1088/1757-899X/578/1/012044

Septembre-Malaterre, A., Boumendjel, A., Seteyen, A.-L. S., Boina, C., Gasque, P., Guiraud, P., & Sélambarom, J. (2022). Focus on the high therapeutic potentials of quercetin and its derivatives. Phytomedicine Plus: International Journal of Phytotherapy and Phytopharmacology, 2(1), 100220. https://doi.org/10.1016/j.phyplu.2022.100220

Shi, Y., Wang, G., Cai, X., Deng, J., Zheng, L., Zhu, H., Zheng, M., Yang, B., & Chen, Z. (2020). An overview of COVID-19. Journal of Zhejiang University. Science. B, 21(5), 343–360. https://doi.org/10.1631/jzus.B2000083

Smid, J., Scherner, M., Wolfram, O., Groscheck, T., Wippermann, J., & C. Braun-Dullaeus, R. (2018). Cardiogenic Causes of Fever. Deutsches Ärzteblatt International, 115(12), 193–199. https://doi.org/10.3238/arztebl.2018.0193

Suwan, T., Wanachantararak, P., Khongkhunthian, S., & Okonogi, S. (2018). Antioxidant activity and potential of Caesalpinia sappan aqueous extract on synthesis of silver nanoparticles. Drug Discoveries & Therapeutics, 12(5), Article 5. https://doi.org/10.5582/ddt.2018.01059

Syamsunarno, M. R. A., Safitri, R., & Kamisah, Y. (2021). Protective Effects of Caesalpinia sappan Linn. And Its Bioactive Compounds on Cardiovascular Organs. Frontiers in Pharmacology, 12, 725745. https://doi.org/10.3389/fphar.2021.725745

Tewtrakul, S., Tungcharoen, P., Sudsai, T., Karalai, C., Ponglimanont, C., & Yodsaoue, O. (2015). Antiinflammatory and Wound Healing Effects of Caesalpinia sappan L. Phytotherapy Research: PTR, 29(6), Article 6. https://doi.org/10.1002/ptr.5321

Tu, Y., Ma, S., Liu, F., Sun, Y., & Dong, X. (2016). Hematoxylin Inhibits Amyloid β-Protein Fibrillation and Alleviates Amyloid-Induced Cytotoxicity. The Journal of Physical Chemistry. B, 120(44), 11360–11368. https://doi.org/10.1021/acs.jpcb.6b06878

Ur Rashid, H., Xu, Y., Ahmad, N., Muhammad, Y., & Wang, L. (2019). Promising anti-inflammatory effects of chalcones via inhibition of cyclooxygenase, prostaglandin E2, inducible NO synthase and nuclear factor κb activities. Bioorganic Chemistry, 87, 335–365. https://doi.org/10.1016/j.bioorg.2019.03.033

Urfalioglu, S., Baylan, F. A., & Guler, M. (2021). Oxidative stress parameters and antioxidant enzyme levels in patients with central serous chorioretinopathy. Nigerian Journal of Clinical Practice, 24(1), 64–68. https://doi.org/10.4103/njcp.njcp_378_19

Vardhani, A. K. (2019). Caesalpinia sappan L: REVIEW ARTICLE. Proceedings of the International Conference on Applied Science and Health, 4, Article 4.

Vu, B., Pham, G., Le, B., Nguyen, V., Van Men, C., & Nguyen, V. (2020). Phenolic Compounds from Caesalpinia sappan. Pharmacognosy Journal, 12(2), 410–414. https://doi.org/10.5530/pj.2020.12.63

Walter, E. J., Hanna-Jumma, S., Carraretto, M., & Forni, L. (2016). The pathophysiological basis and consequences of fever. Critical Care (London, England), 20(1), 200. https://doi.org/10.1186/s13054-016-1375-5

Wang, M., Chen, Z., Yang, L., & Ding, L. (2021). Sappanone A Protects Against Inflammation, Oxidative Stress and Apoptosis in Cerebral Ischemia-Reperfusion Injury by Alleviating Endoplasmic Reticulum Stress. Inflammation, 44(3), 934–945. https://doi.org/10.1007/s10753-020-01388-6

Wang, X., Xiu, Z., Du, Y., Li, Y., Yang, J., Gao, Y., Li, F., Yin, X., & Shi, H. (2019). Brazilin Treatment Produces Antidepressant- and Anxiolytic-Like Effects in Mice. Biological & Pharmaceutical Bulletin, 42(8), 1268–1274. https://doi.org/10.1248/bpb.b18-00882

Widodo, N., Puspitarini, S., Widyananda, M. H., Alamsyah, A., Wicaksono, S. T., Masruri, M., & Jatmiko, Y. D. (2022). Anticancer activity of Caesalpinia sappan by downregulating mitochondrial genes in A549 lung cancer cell line. F1000Research, 11, 169. https://doi.org/10.12688/f1000research.76187.2

Wilhelms, D. B., Kirilov, M., Mirrasekhian, E., Eskilsson, A., Kugelberg, U. Ö., Klar, C., Ridder, D. A., Herschman, H. R., Schwaninger, M., Blomqvist, A., & Engblom, D. (2014). Deletion of Prostaglandin E2 Synthesizing Enzymes in Brain Endothelial Cells Attenuates Inflammatory Fever. The Journal of Neuroscience, 34(35), 11684–11690. https://doi.org/10.1523/JNEUROSCI.1838-14.2014

Wrotek, S., Sobocińska, J., Kozłowski, H. M., Pawlikowska, M., Jędrzejewski, T., & Dzialuk, A. (2020). New Insights into the Role of Glutathione in the Mechanism of Fever. International Journal of Molecular Sciences, 21(4), 1393. https://doi.org/10.3390/ijms21041393

Wu, S. Q., Otero, M., Unger, F. M., Goldring, M. B., Phrutivorapongkul, A., Chiari, C., Kolb, A., Viernstein, H., & Toegel, S. (2011). Anti-inflammatory activity of an ethanolic Caesalpinia sappan extract in human chondrocytes and macrophages. Journal of Ethnopharmacology, 138(2), Article 2. https://doi.org/10.1016/j.jep.2011.09.011

Xie, F., Xu, L., Zhu, H., Chen, Y., Li, Y., Nong, L., Zeng, Y., & Cen, S. (2022). The Potential Antipyretic Mechanism of Ellagic Acid with Brain Metabolomics Using Rats with Yeast-Induced Fever. Molecules, 27(8), Article 8. https://doi.org/10.3390/molecules27082465

Xu, D., Hu, M.-J., Wang, Y.-Q., & Cui, Y.-L. (2019). Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application. Molecules, 24(6), 1123. https://doi.org/10.3390/molecules24061123

Young, P. J., & Saxena, M. (2014). Fever management in intensive care patients with infections. Critical Care, 18(2), 206. https://doi.org/10.1186/cc13773

Zanin, J. L. B., De Carvalho, B. A., Salles Martineli, P., Dos Santos, M. H., Lago, J. H. G., Sartorelli, P., Viegas, C., & Soares, M. G. (2012). The Genus Caesalpinia L. (Caesalpiniaceae): Phytochemical and Pharmacological Characteristics. Molecules, 17(7), Article 7. https://doi.org/10.3390/molecules17077887

Zappavigna, S., Cossu, A. M., Grimaldi, A., Bocchetti, M., Ferraro, G. A., Nicoletti, G. F., Filosa, R., & Caraglia, M. (2020). Anti-Inflammatory Drugs as Anticancer Agents. International Journal of Molecular Sciences, 21(7), 2605. https://doi.org/10.3390/ijms21072605

Zeng, K.-W., Zhao, M.-B., Ma, Z.-Z., Jiang, Y., & Tu, P.-F. (2012). Protosappanin A inhibits oxidative and nitrative stress via interfering the interaction of transmembrane protein CD14 with Toll-like receptor-4 in lipopolysaccharide-induced BV-2 microglia. International Immunopharmacology, 14(4), 558–569. https://doi.org/10.1016/j.intimp.2012.09.004

Refbacks

  • There are currently no refbacks.