Therapeutic Potential of Bovine Lactoferrin to Reduce Brain Malondialdehyde Levels in Hyperlipidemia-Induced Sprague-Dawley Rats
Abstract
Hyperlipidemia is a medical condition that can trigger various diseases, one of which is a neurodegenerative or neurological disease. Lactoferrin is known to have multiple protective activities, one of which is antioxidant. This study aimed to determine the potential of lactoferrin bovine to decrease brain MDA levels in Sprague-Dawley (SD) rats induced by hyperlipidemia. This study was an in vivo experimental study using 24 male SD rats divided into six groups: normal, negative control, positive control, low-dose bovine lactoferrin (LLF), intermediate-dose bovine lactoferrin (ILF), and high-dose bovine lactoferrin (HLF). The diet in the normal group was the standard diet, and the other groups were induced by a high-fat diet (HFD). The intervention for the positive control group was simvastatin. In contrast, LLF, ILF, and HLF groups were given bovine lactoferrin doses of 100, 200, and 400 mg/kgBW, respectively. After seven weeks, all rats were necropsied, and their brains were taken to be tested for malondialdehyde (MDA) levels with an MDA assay kit using a spectrophotometer. Data was then analyzed using Shapiro-Wilk and Levene test and continued with one-way ANOVA and post-hoc Tukey test. There were significant differences (p<0.05) between the negative control group (269.99±13.50 nmol/g weight) and every bovine lactoferrin groups (219.92±22.99 nmol/g weight, 151.60±23.43 nmol/g weight, 158.16±12.33 nmol/g weight, respectively) in reducing brain MDA levels. In summary, all bovine lactoferrin groups (100, 200, and 400 mg/kgBW) significantly reduced brain MDA levels of SD rats in hyperlipidemia condition.
Keywords
Full Text:
PDFReferences
Amiya, E. (2016). Interaction of hyperlipidemia and reactive oxygen species: Insights from the lipid-raft platform. World Journal of Cardiology, 8(12), 689–694. https://doi.org/10.4330/wjc.v8.i12.689
Ayala, A., Muñoz, M. F., & Argüelles, S. (2014). Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxidative Medicine and Cellular Longevity, 2014, e360438. https://doi.org/10.1155/2014/360438
Brooks, S. W., Dykes, A. C., & Schreurs, B. G. (2017). A High-Cholesterol Diet Increases 27-Hydroxycholesterol and Modifies Estrogen Receptor Expression and Neurodegeneration in Rabbit Hippocampus. Journal of Alzheimer’s Disease: JAD, 56(1), 185–196. https://doi.org/10.3233/JAD-160725
Catalá, A., & Díaz, M. (2016). Editorial: Impact of Lipid Peroxidation on the Physiology and Pathophysiology of Cell Membranes. Frontiers in Physiology, 7, 423. https://doi.org/10.3389/fphys.2016.00423
Chan, P. T., Matanjun, P., Yasir, S., & Tek Song, T. (2015). Oxidative stress biomarkers in organs of hyperlipidaemic and normal rats fed tropical red seaweed, Gracilaria changii. Journal of Applied Phycology, 28. https://doi.org/10.1007/s10811-015-0670-x
Chandra, M., Panchatcharam, M., & Miriyala, S. (2016). Biomarkers in ROS and Role of Isoprostanes in Oxidative Stress. In Free Radicals and Diseases. IntechOpen. https://doi.org/10.5772/64706
Charan, J., & Kantharia, N. D. (2013). How to calculate sample size in animal studies? Journal of Pharmacology & Pharmacotherapeutics, 4(4), 303–306. https://doi.org/10.4103/0976-500X.119726
Chen, H.-A., Chiu, C.-C., Huang, C.-Y., Chen, L.-J., Tsai, C.-C., Hsu, T.-C., & Tzang, B.-S. (2016). Lactoferrin Increases Antioxidant Activities and Ameliorates Hepatic Fibrosis in Lupus-Prone Mice Fed with a High-Cholesterol Diet. Journal of Medicinal Food, 19(7), 670–677. https://doi.org/10.1089/jmf.2015.3634
Chun, Y. S., & Chung, S. (2020). High-Cholesterol Diet Decreases the Level of Phosphatidylinositol 4,5-Bisphosphate by Enhancing the Expression of Phospholipase C (PLCβ1) in Rat Brain. International Journal of Molecular Sciences, 21(3), E1161. https://doi.org/10.3390/ijms21031161
Dias, I., Polidori, M. C., & Griffiths, H. (2014). Hypercholesterolaemia-induced oxidative stress at the blood-brain barrier. Biochemical Society Transactions, 42, 1001–1005. https://doi.org/10.1042/BST20140164
Faridvand, Y., Nozari, S., Asoudeh-Fard, A., Karimi, M.-A., Pezeshkian, M., Safaie, N., & Nouri, M. (2017). Bovine lactoferrin ameliorates antioxidant esterase activity and 8-isoprostane levels in high-cholesterol-diet fed rats. International Journal for Vitamin and Nutrition Research. Internationale Zeitschrift Fur Vitamin- Und Ernahrungsforschung. Journal International De Vitaminologie Et De Nutrition, 87(3–4), 201–206. https://doi.org/10.1024/0300-9831/a000516
Forrester, S. J., Kikuchi, D. S., Hernandes, M. S., Xu, Q., & Griendling, K. K. (2018). Reactive Oxygen Species in Metabolic and Inflammatory Signaling. Circulation Research, 122(6), 877–902. https://doi.org/10.1161/CIRCRESAHA.117.311401
Forster, R., Bourtourault, M., Chung, Y. J., Silvano, J., Sire, G., Spezia, F., Puel, C., Descotes, J., & Mikogami, T. (2014). Safety evaluation of a whey protein fraction containing a concentrated amount of naturally occurring TGF-β2. Regulatory Toxicology and Pharmacology, 69(3), 398–407. https://doi.org/10.1016/j.yrtph.2014.05.003
Gaynor, P. (2015). GRAS Exemption Claim for Vitalarmor® GF-100, a Basic Whey Protein Isolate, for Use as an Ingredient in Term Infant Formulas and Toddler Formulas. Available from: https://www.fda.gov/media/97006/download [Accessed 1st April 2022]
Grundy, S. M., Stone, N. J., Bailey, A. L., Beam, C., Birtcher, K. K., Blumenthal, R. S., Braun, L. T., de Ferranti, S., Faiella-Tommasino, J., Forman, D. E., Goldberg, R., Heidenreich, P. A., Hlatky, M. A., Jones, D. W., Lloyd-Jones, D., Lopez-Pajares, N., Ndumele, C. E., Orringer, C. E., Peralta, C. A., & Yeboah, J. (2019). 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA
Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation, 139(25), e1082–e1143. https://doi.org/10.1161/CIR.0000000000000625
Jusni, L.F.J., Chandra, V., Djuartina, T., Notario, D., Arieselia, Z., & Hananta, L. (2022). Potential Antihyperlipidemia Effect of Lactoferrin in Hyperlipidemia-Induced Male Sprague–Dawley Rats. Makara J Health Res, 26(3), 204-209. https://doi.org/10.7454/msk.v26i3.1387
Kell, D. B., Heyden, E. L., & Pretorius, E. (2020). The Biology of Lactoferrin, an Iron-Binding Protein That Can Help Defend Against Viruses and Bacteria. Frontiers in Immunology, 11, 1221. https://doi.org/10.3389/fimmu.2020.01221
Khan, A. I., Liu, J., & Dutta, P. (2020). Bayesian inference for parameter estimation in lactoferrin-mediated iron transport across blood-brain barrier. Biochimica Et Biophysica Acta. General Subjects, 1864(3), 129459. https://doi.org/10.1016/j.bbagen.2019.129459
Li, Y.-Q., & Guo, C. (2021). A Review on Lactoferrin and Central Nervous System Diseases. Cells, 10(7), 1810. https://doi.org/10.3390/cells10071810
National Institute of Health Research and Development Indonesian Ministry of Health (2018). Laporan Nasional Riset Kesehatan Dasar (RISKESDAS) 2018. Available from: http://repository.bkpk.kemkes.go.id/3514/1/Laporan%20Riskesdas%202018%20Nasional.pdf [Accessed 10th December 2021]
Nelson, R. H. (2013). Hyperlipidemia as a Risk Factor for Cardiovascular Disease. Primary Care, 40(1), 195–211. https://doi.org/10.1016/j.pop.2012.11.003
Nozari, S., Fathi Maroufi, N., Nouri, M., Paytakhti Oskouei, M., Shiralizade, J., Yekani, F., Mamipour, M., & Faridvand, Y. (2018). Decreasing serum homocysteine and hypocholesterolemic effects of Bovine lactoferrin in male rat fed with high-cholesterol diet. Journal of Cardiovascular and Thoracic Research, 10(4), 203–208. https://doi.org/10.15171/jcvtr.2018.35
Phaniendra, A., Jestadi, D. B., & Periyasamy, L. (2015). Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian Journal of Clinical Biochemistry, 30(1), 11–26. https://doi.org/10.1007/s12291-014-0446-0
Pinal-Fernandez, I., Casal-Dominguez, M., & Mammen, A. L. (2018). Statins: Pros and cons. Medicina Clinica, 150(10), 398–402. https://doi.org/10.1016/j.medcli.2017.11.030
Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. (2017). Oxidative Stress: Harms and Benefits for Human Health. Oxidative Medicine and Cellular Longevity, 2017. https://doi.org/10.1155/2017/8416763
Rodwell, V. W., Bender, D. A., Botham, K. M., Kennelly, P. J., & Weil, P. A. (2015). Harper’s illustrated biochemistry (Thirtieth edition). McGraw-Hill Education.
Shichiri, M. (2014). The role of lipid peroxidation in neurological disorders. Journal of Clinical Biochemistry and Nutrition, 54(3), 151–160. https://doi.org/10.3164/jcbn.14-10
Superti, F. (2020). Lactoferrin from Bovine Milk: A Protective Companion for Life. Nutrients, 12(9), Article 9. https://doi.org/10.3390/nu12092562
Vance, J. E. (2012). Dysregulation of cholesterol balance in the brain: Contribution to neurodegenerative diseases. Disease Models & Mechanisms, 5(6), 746–755. https://doi.org/10.1242/dmm.010124
Wu, C.-C., Cheng, Y.-H., Chen, K.-H., & Chien, C.-T. (2022). Deep Sea Water-Dissolved Organic Matter Intake Improves Hyperlipidemia and Inhibits Thrombus Formation and Vascular Inflammation in High-Fat Diet Hamsters. Life, 12(1), 82. https://doi.org/10.3390/life12010082
Yang, W., Shi, H., Zhang, J., Shen, Z., Zhou, G., & Hu, M. (2017). Effects of the duration of hyperlipidemia on cerebral lipids, vessels and neurons in rats. Lipids in Health and Disease, 16. https://doi.org/10.1186/s12944-016-0401-6
Zhang, G., Li, M., Xu, Y., Peng, L., Yang, C., Zhou, Y., & Zhang, J. (2015). Antioxidation Effect of Simvastatin in Aorta and Hippocampus: A Rabbit Model Fed High-Cholesterol Diet. Oxidative Medicine and Cellular Longevity, 2016, e6929306. https://doi.org/10.1155/2016/6929306
Zhao, X.-S., Wu, Q., Peng, J., Pan, L.-H., Ren, Z., Liu, H.-T., Jiang, Z.-S., Wang, G.-X., Tang, Z.-H., & Liu, L.-S. (2017). Hyperlipidemia-induced apoptosis of hippocampal neurons in apoE(−/−) mice may be associated with increased PCSK9 expression. Molecular Medicine Reports, 15(2), 712–718. https://doi.org/10.3892/mmr.2016.6055
Zinellu, A., Paliogiannis, P., Usai, M. F., Carru, C., & Mangoni, A. A. (2019). Effect of statin treatment on circulating malondialdehyde concentrations: A systematic review and meta-analysis. Therapeutic Advances in Chronic Disease, 10. https://doi.org/10.1177/2040622319862714
Zlatković, J., Todorović, N., Bošković, M., Pajović, S. B., Demajo, M., & Filipović, D. (2014). Different susceptibility of prefrontal cortex and hippocampus to oxidative stress following chronic social isolation stress. Molecular and Cellular Biochemistry, 393(1–2), 43–57. https://doi.org/10.1007/s11010-014-2045-z
Refbacks
- There are currently no refbacks.