Modifications and Pharmaceutical Applications of Glucomannan as Novel Pharmaceutical Excipient in Indonesia: Review Article

Nuur Aanisah, Yoga Windhu Wardhana, Anis Yohana Chaerunisa


Currently, Indonesia is excessively dependent on imported raw materials, such as pharmaceutical excipients. In this regard, the current pandemic should remind the critical nature of independence in purchasing raw resources to cope with future dynamics. One of the causes of dependence is the lack of raw materials management, specifically from biological sources abundantly available. A significant advantage is directed towards natural excipients because large quantities of more affordable plants ensure sustained availability in nature. Therefore, this study highlighted the possibility of using excipients derived from natural resources that are commonly used yet underutilized in Indonesia, such as glucomannan (GM). Indonesia has the potential to produce GM, considering the high natural resources as its source. However, it has not been applied extensively in pharmaceutical preparations due to diverse uses in several countries' drug, food, and cosmetic industries. This study aimed to discuss the modifications of GM and their use as pharmaceutical excipients with better physical properties. Additionally, the potential of melinjo seeds that have not been widely used was also analyzed. Melinjo seeds can be used as a source of GM due to their fairly large polysaccharide of about 64.11%. This issue will promote national autonomy in developing novel pharmaceutical excipients derived from natural resources that are highly economical and innovative.


glucomannan; modification; natural excipients; pharmaceutical application

Full Text:



Abbaszadeh, A., Macnaughtan, W., Sworn, G., and Foster, T. J. (2016). New insights into xanthan synergistic interactions with konjac glucomannan: A novel interaction mechanism proposal. Carbohydrate Polymers, 144, 168–177. 10.1016/j.carbpol.2016.02.026

Al-Rudainy, B., Galbe, M., and Wallberg, O. (2020). Hemicellulose recovery from spent-sulfite-liquor: Lignin removal by adsorption to resins for improvement of the ultrafiltration process. Molecules, 25(15). 10.3390/molecules25153435

Alonso-Sande, M., Cuña, M., Remuñán-López, C., Teijeiro-Osorio, D., Alonso-Lebrero, J. L., and Alonso, M. J. (2006). Formation of new Glucomannan - Chitosan nanoparticles and study of their ability to associate and deliver proteins. Macromolecules, 39(12), 4152–4158. 10.1021/ma060230j

Alvarez-Manceñido, F., Landin, M., and Martínez-Pacheco, R. (2008). Konjac glucomannan/xanthan gum enzyme sensitive binary mixtures for colonic drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 69(2), 573–581. 10.1016/j.ejpb.2008.01.004

Alves, A., Miguel, S. P., Araujo, A. R. T. S., and Jes, D. (2020). Xanthan Gum – Konjac Glucomannan Blend Hydrogel. Polymers, 12(99), 1–15.

Ardhany, S. D., Puspitasari, Y., Meydawati, Y., and Novaryatiin, S. (2019). Extraction and Determination of Glucomannan Contents from Porang Tuber (Amorphophallus muelleri Blume) Using DNS Method. Jurnal Sains Dan Kesehatan, 2(2), 122–128.

Bhat, R., and Yahya, B. N. (2014). Evaluating belinjau (Gnetum gnemon L.) seed flour quality as a base for development of novel food products and food formulations. Food Chemistry, 156, 42–49. 10.1016/j.foodchem.2014.01.063

Boettger, J., Deussen, O., and Ziezold, H. (2011). ( 12 ) Patent Application Publication ( 10 ) Pub . No .: US 2011 / 0141115A1. 1(19), 1–6.

BPS. (2020). Produksi Buah-buahan Menurut Jenis Tanaman Menurut Provinsi, 2020. Available from: [Accessed 17th September 2021].

Campestrini, L. H., Silveira, J. L. M., Duarte, M. E. R., Koop, H. S., and Noseda, M. D. (2013). NMR and rheological study of Aloe barbadensis partially acetylated glucomannan. Carbohydrate Polymers, 94(1), 511–519. 10.1016/j.carbpol.2013.01.020

Chen, H., Lan, G., Ran, L., Xiao, Y., Yu, K., Lu, B., Dai, F., Wu, D., and Lu, F. (2018). A novel wound dressing based on a Konjac glucomannan/silver nanoparticle composite sponge effectively kills bacteria and accelerates wound healing. Carbohydrate Polymers, 183, 70–80. 10.1016/j.carbpol.2017.11.029

Chen, J., Li, J., and Li, B. (2011). Identification of molecular driving forces involved in the gelation of konjac glucomannan: Effect of degree of deacetylation on hydrophobic association. Carbohydrate Polymers, 86(2), 865–871. 10.1016/j.carbpol.2011.05.025

Chivero, P., Gohtani, S., Yoshii, H., and Nakamura, A. (2015). Effect of xanthan and guar gums on the formation and stability of soy soluble polysaccharide oil-in-water emulsions. Food Research International, 70, 7–14. 10.1016/j.foodres.2015.01.025

Cuña, M., Alonso-Sande, M., Remunãn-López, C., Pivel, J. P., Alonso-Lebrero, J. L., and Alonso, M. J. (2006). Development of phosphorylated glucomannan-coated Chitosan nanoparticles as nanocarriers for protein delivery. Journal of Nanoscience and Nanotechnology, 6(9–10), 2887–2895. 10.1166/jnn.2006.435

Daglio, Y., Rodríguez, M. C., Prado, H. J., and Matulewicz, M. C. (2019). Paramylon and synthesis of its ionic derivatives: Applications as pharmaceutical tablet disintegrants and as colloid flocculants. Carbohydrate Research, 484, 107779. 10.1016/j.carres.2019.107779

Du, X., Li, J., Chen, J., and Li, B. (2012). Effect of degree of deacetylation on physicochemical and gelation properties of konjac glucomannan. Food Research International, 46(1), 270–278. 10.1016/j.foodres.2011.12.015

Erdemir, D., Daftary, V., Lindrud, M., Buckley, D., Lane, G., Malsbury, A., Tao, J., Kopp, N., S. Hsieh, D., Nikitczuk, W., and D. Engstrom, J. (2019). Design and Scale-up of a Co-processing Technology to Improve Powder Properties of Drug Substances. Organic Process Research & Development, 23(12), 2685–2698. 10.1021/acs.oprd.9b00354

Gao, H. X., He, Z., Sun, Q., He, Q., and Zeng, W. C. (2019). A functional polysaccharide film forming by pectin, chitosan, and tea polyphenols. Carbohydrate Polymers, 215, 1–7. 10.1016/j.carbpol.2019.03.029

Guerreiro, F., Pontes, J. F., Rosa da Costa, A. M., and Grenha, A. (2019). Spray-drying of konjac glucomannan to produce microparticles for an application as antitubercular drug carriers. Powder Technology, 342, 246–252. 10.1016/j.powtec.2018.09.068

Guerreiro, F., Swedrowska, M., Patel, R., Flórez-Fernández, N., Torres, M. D., Rosa da Costa, A. M., Forbes, B., and Grenha, A. (2021). Engineering of konjac glucomannan into respirable microparticles for delivery of antitubercular drugs. International Journal of Pharmaceutics, 604. 10.1016/j.ijpharm.2021.120731

He, H., Ye, J., Zhang, X., Huang, Y., Li, X., and Xiao, M. (2017). κ-Carrageenan/locust bean gum as hard capsule gelling agents. Carbohydrate Polymers, 175, 417–424. 10.1016/j.carbpol.2017.07.049

Ministry of Health of the Republic of Indonesia, (2013). Peta Jalan Pengembangan Bahan Baku Obat (Vol. 369, Issue 1). Available from: [Accessed 25th August 2021].

Hongbo, T., Lan, W., Yanping, L., and Siqing, D. (2019). Effect of acidolysis and oxidation on structure and properties of konjac glucomannan. International Journal of Biological Macromolecules, 130, 378–387. 10.1016/j.ijbiomac.2019.02.048

Huang, Y. C., Chu, H. W., Huang, C. C., Wu, W. C., and Tsai, J. S. (2015). Alkali-treated konjac glucomannan film as a novel wound dressing. Carbohydrate Polymers, 117, 778–787. 10.1016/j.carbpol.2014.10.047

Kato, E., Tokunaga, Y., and Sakan, F. (2009). Stilbenoids Isolated from the Seeds of Melinjo (Gnetum gnemon L.) and Their Biological Activity. Journal of Agricultural and Food Chemistry, 57(6), 2544–2549. 10.1021/jf803077p

Korkiatithaweechai, S., Umsarika, P., Praphairaksit, N., and Muangsin, N. (2011). Controlled release of diclofenac from matrix polymer of chitosan and oxidized konjac glucomannan. Marine Drugs, 9(9), 1649–1663. 10.3390/md9091649

Koroskenyi, B., and McCarthy, S. P. (2001). Synthesis of acetylated konjac glucomannan and effect of degree of acetylation on water absorbency. Biomacromolecules, 2(3), 824–826. 10.1021/bm010014c

Kuang, Y., Chen, L., Zhai, J., Zhao, S., Xiao, Q., Wu, K., Qiao, D., and Jiang, F. (2021). Microstructure, thermal conductivity, and flame retardancy of konjac glucomannan based aerogels. Polymers, 13(2), 1–11. 10.3390/polym13020258

Liang, H., Ye, T., Zhou, B., Li, J., He, L., Li, Y., Liu, S., Chen, Y., and Li, B. (2015). Fabrication of gastric floating controlled release tablet based on konjac glucomannan. Food Research International, 72, 47–53. 10.1016/j.foodres.2015.02.014

Lin, X., Wu, Q., Luo, X., Liu, F., Luo, X., and He, P. (2010). Effect of degree of acetylation on thermoplastic and melt rheological properties of acetylated konjac glucomannan. Carbohydrate Polymers, 82(1), 167–172. 10.1016/j.carbpol.2010.04.053

Liu, C., Li, J., Li, K., Xie, C., and Liu, J. (2020). Oxidized konjac glucomannan-cassava starch and sucrose esters as novel excipients for sustained-release matrix tablets. International Journal of Biological Macromolecules, 156, 1045–1052. 10.1016/j.ijbiomac.2019.11.146

Liu, J., Xu, Q., Zhang, J., Zhou, X., Lyu, F., Zhao, P., and Ding, Y. (2015). Preparation, composition analysis and antioxidant activities of konjac oligo-glucomannan. Carbohydrate Polymers, 130, 398–404. 10.1016/j.carbpol.2015.05.025

Long, X. Y., Luo, X. G., Zou, N. W., and Ma, Y. H. (2011). Preparation and in vitro evaluation of Carboxymethyl konjac glucomannan coated 5-aminosalicylic acid tablets for colonic delivery. Advanced Materials Research, 152153, 1712–1715. 10.4028/

Lu, M., Li, Z., Liang, H., Shi, M., Zhao, L., Li, W., Chen, Y., Wu, J., Wang, S., Chen, X., Yuan, Q., and Li, Y. (2015). Controlled release of anthocyanins from oxidized konjac glucomannan microspheres stabilized by chitosan oligosaccharides. Food Hydrocolloids, 51, 476–485. 10.1016/j.foodhyd.2015.05.036

Luan, J., Wu, K., Li, C., Liu, J., Ni, X., Xiao, M., Xu, Y., Kuang, Y., and Jiang, F. (2017). pH-Sensitive drug delivery system based on hydrophobic modified konjac glucomannan. Carbohydrate Polymers, 171, 9–17. 10.1016/j.carbpol.2017.04.094

Luo, P., Nie, M., Wen, H., Xu, W., Fan, L., and Cao, Q. (2018). Preparation and characterization of carboxymethyl chitosan sulfate/oxidized konjac glucomannan hydrogels. International Journal of Biological Macromolecules, 113, 1024–1031. 10.1016/j.ijbiomac.2018.01.101

Magalhães, G. A., Santos, C. M. W., Silva, D. A., Maciel, J. S., Feitosa, J. P. A., Paula, H. C. B., and de Paula, R. C. M. (2009). Microspheres of chitosan/carboxymethyl cashew gum (CH/CMCG): Effect of chitosan molar mass and CMCG degree of substitution on the swelling and BSA release. Carbohydrate Polymers, 77(2), 217–222. 10.1016/j.carbpol.2008.12.037

Maniruzzaman, M., Rana, M. M., Boateng, J. S., Mitchell, J. C., and Douroumis, D. (2013). Dissolution enhancement of poorly water-soluble APIs processed by hot-melt extrusion using hydrophilic polymers. Drug Development and Industrial Pharmacy, 39(2), 218–227. 10.3109/03639045.2012.670642

Melvin, J. F., and Stewart, C. M. (1969). The Chemical Composition of the Wood of Gnetum gnemon L.. Walter de Gruyter. 23(2). 10.1515/hfsg.1969.23.2.51

Mikkelson, A., Maaheimo, H., and Terhi, H. (2013). Hydrolysis of konjac glucomannan by Trichoderma reesei mannanase and endoglucanases Cel7B and Cel5A for the production of glucomannooligosaccharides. Biomass and Bioenergy, 372, 60–68.

Mun’Im, A., Munadhil, M. A., Puspitasari, N., Azminah, and Yanuar, A. (2017). Angiotensin converting enzyme inhibitory activity of melinjo (Gnetum gnemon L.) seed extracts and molecular docking of its stilbene constituents. Asian Journal of Pharmaceutical and Clinical Research, 10(3), 243–248. 10.22159/ajpcr.2017.v10i3.16108

Nair, S. B., and Jyothi, A. N. (2013). Cassava starch-konjac glucomannan biodegradable blend films: In vitro study as a matrix for controlled drug delivery. Starch/Staerke, 65(3–4), 273–284. 10.1002/star.201200070

Narang, A. S., and Boddu, S. H. (2015). Excipient applications in formulation design and drug delivery. Excipient Applications in Formulation Design and Drug Delivery, 1–681. 10.1007/978-3-319-20206-8

Nawawi, D. S., Syafii, W., Akiyama, T., and Matsumoto, Y. (2016). Characteristics of guaiacyl-syringyl lignin in reaction wood in the gymnosperm Gnetum gnemon L. Holzforschung, 70(7), 593–602. 10.1515/hf-2015-0107

Neto, G. R. J., Genevro, G. M., Paulo, L. de A., Lopes, P. S., de Moraes, M. A., and Beppu, M. M. (2019). Characterization and in vitro evaluation of chitosan/konjac glucomannan bilayer film as a wound dressing. Carbohydrate Polymers, 212, 59–66. 10.1016/j.carbpol.2019.02.017

Nurlela, Ariesta, N., Laksono, D. S., Santosa, E., and Muhandri, T. (2021). Characterization of glucomannan extracted from fresh porang tubers using ethanol technical grade. Molekul, 16(1), 1–8. 10.20884/

Owusu, F. W. A., Boakye-Gyasi, M. E., Entsie, P., Bayor, M. T., and Ofori-Kwakye, K. (2021). Utilization of Pectin from Okra as Binding Agent in Immediate Release Tablets. BioMed Research International, 2021, 1–11. 10.1155/2021/6002286

Pan, Z., Meng, J., and Wang, Y. (2011). Effect of alkalis on deacetylation of konjac glucomannan in mechano-chemical treatment. Particuology, 9(3), 265–269. 10.1016/j.partic.2010.11.003

Pasaribu, G. T., Hastuti, N., Efiyanti, L., Waluyo, T. K., and Pari, G. (2020). Optimization of Glucomanan Purification Techniques in Porang Flour (Amorphophallus muelleri Blume). Jurnal Penelitian Hasil Hutan, 37(7), 197–203. 10.20886/jphh.2019.37.3.197-203

Pettolino, F. A., Walsh, C., Fincher, G. B., and Bacic, A. (2012). Determining the polysaccharide composition of plant cell walls. Nature Protocols, 7(9), 1590–1607. 10.1038/nprot.2012.081

Rintelen, v.K., Arida, E., and Häuser, C. (2017). A review of biodiversity-related issues and challenges in megadiverse Indonesia and other Southeast Asian countries. Research Ideas and Outcomes, 3. 10.3897/rio.3.e20860

Scopus. (2021). Advanced document search in Scopus. Available from: [Accessed 15th September 2021].

Singh, S., Nwabor, O. F., Ontong, J. C., and Voravuthikunchai, S. P. (2020). Characterization and assessment of compression and compactibility of novel spray-dried, co-processed bio-based polymer. Journal of Drug Delivery Science and Technology, 56(November 2019), 101526. 10.1016/j.jddst.2020.101526

Tang, W., Liu, D., Yin, J. Y., and Nie, S. P. (2020). Consecutive and progressive purification of food-derived natural polysaccharide: Based on material, extraction process and crude polysaccharide. In Trends in Food Science and Technology. (Vol. 99, pp. 76–87). 10.1016/j.tifs.2020.02.015

Tekade, B. W., and Yogita, A. (2013). Gums and Mucilages : Excipients for modified Drug Delivery System. Journal of Advanced Pharmacy Education & Research, 3(4), 359–367.

Wang, C., Li, B., Chen, T., Mei, N., Wang, X., and Tang, S. (2020). Preparation and bioactivity of acetylated konjac glucomannan fibrous membrane and its application for wound dressing. Carbohydrate Polymers, 229, 115404. 10.1016/j.carbpol.2019.115404

Wang, L. H., Huang, G. Q., Xu, T. C., and Xiao, J. X. (2019). Characterization of carboxymethylated konjac glucomannan for potential application in colon-targeted delivery. Food Hydrocolloids, 94(June 2018), 354–362. 10.1016/j.foodhyd.2019.03.045

Wang, M., He, W., Wang, S., and Song, X. (2015). Carboxymethylated glucomannan as paper strengthening agent. Carbohydrate Polymers, 125, 234–239. 10.1016/j.carbpol.2015.02.060

Wardhani, D. H., Puspitosari, D., Ashidiq, M. A., Aryanti, N., and Prasetyaningrum, A. (2017). Effect of deacetylation on functional properties of glucomannan. AIP Conference Proceedings, 1855(June 2017). AIP Publishing. 10.1063/1.4985490

Wardhani, D. H., Wardana, I. N., Ulya, H. N., Cahyono, H., Kumoro, A. C., and Aryanti, N. (2020). The effect of spray-drying inlet conditions on iron encapsulation using hydrolysed glucomannan as a matrix. Food and Bioproducts Processing, 123, 72–79. 10.1016/j.fbp.2020.05.013

Willför, S., Sjöholm, R., Laine, C., Roslund, M., Hemming, J., and Holmbom, B. (2003). Characterisation of water-soluble galactoglucomannans from Norway spruce wood and thermomechanical pulp. Carbohydrate Polymers, 52(2), 175–187. 10.1016/S0144-8617(02)00288-6

Wu, C., Sun, J., Jiang, H., Li, Y., and Pang, J. (2021). Construction of carboxymethyl konjac glucomannan/chitosan complex nanogels as potential delivery vehicles for curcumin. Food Chemistry, 362, 130242. 10.1016/j.foodchem.2021.130242

Wu, K., Zhu, Q., Qian, H., Xiao, M., Corke, H., Nishinari, K., and Jiang, F. (2018). Controllable hydrophilicity-hydrophobicity and related properties of konjac glucomannan and ethyl cellulose composite films. Food Hydrocolloids, 79, 301–309. 10.1016/j.foodhyd.2017.12.034

Xiao, J. X., Wang, L. H., Xu, T. C., and Huang, G. Q. (2019). Complex coacervation of carboxymethyl konjac glucomannan and chitosan and coacervate characterization. International Journal of Biological Macromolecules, 123, 436–445. 10.1016/j.ijbiomac.2018.11.086

Xiao, M., Dai, S., Wang, L., Ni, X., Yan, W., Fang, Y., Corke, H., and Jiang, F. (2015a). Carboxymethyl modification of konjac glucomannan affects water binding properties. Carbohydrate Polymers, 130, 1–8. 10.1016/j.carbpol.2015.05.001

Xiao, M., Dai, S., Wang, L., Ni, X., Yan, W., Fang, Y., Corke, H., and Jiang, F. (2015b). Carboxymethyl modification of konjac glucomannan affects water binding properties. Carbohydrate Polymers, 130, 1–8. 10.1016/j.carbpol.2015.05.001

Xu, K., Guo, M., Du, J., and Zhang, Z. (2019). Okra polysaccharide: Effect on the texture and microstructure of set yoghurt as a new natural stabilizer. International Journal of Biological Macromolecules, 133, 117–126. 10.1016/j.ijbiomac.2019.04.035

Xu, W., Wang, S., Ye, T., Jin, W., Liu, J., Lei, J., Li, B., and Wang, C. (2014). A simple and feasible approach to purify konjac glucomannan from konjac flour - Temperature effect. Food Chemistry, 158, 171–176. 10.1016/j.foodchem.2014.02.093

Yu, H., and Xiao, C. (2008). Synthesis and properties of novel hydrogels from oxidized konjac glucomannan crosslinked gelatin for in vitro drug delivery. Carbohydrate Polymers, 72(3), 479–489. 10.1016/j.carbpol.2007.09.023

Zhang, C., Chen, J. Da, and Yang, F. Q. (2014). Konjac glucomannan, a promising polysaccharide for OCDDS. In Carbohydrate Polymers. 104(1), pp. 175–181). 10.1016/j.carbpol.2013.12.081

Zhang, F., Liu, M., Mo, F., Zhang, M., and Zheng, J. (2017). Effects of acid and salt solutions on the pasting, rheology and texture of lotus root starch-konjac glucomannan mixture. Polymers, 9(12). 10.3390/polym9120695

Zhang, M., Cui, S. W., Cheung, P. C. K., and Wang, Q. (2007). Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity. In Trends in Food Science and Technology (Vol. 18, Issue 1, pp. 4–19). Elsevier. 10.1016/j.tifs.2006.07.013

Zhou, Y., Cao, H., Hou, M., Nirasawa, S., Tatsumi, E., Foster, T. J., and Cheng, Y. (2013). Effect of konjac glucomannan on physical and sensory properties of noodles made from low-protein wheat flour. Food Research International, 51(2), 879–885. 10.1016/j.foodres.2013.02.002

Zhu, W., Li, J., Lei, J., Li, Y., Chen, T., Duan, T., Yao, W., Zhou, J., Yu, Y., and Liu, Y. (2018). Silver nanoparticles incorporated konjac glucomannan-montmorillonite nacre-like composite films for antibacterial applications. Carbohydrate Polymers, 197, 253–259. 10.1016/j.carbpol.2018.06.005