Modifications and Pharmaceutical Applications of Glucomannan as Novel Pharmaceutical Excipient in Indonesia: Review Article
Abstract
Currently, Indonesia is excessively dependent on imported raw materials, such as pharmaceutical excipients. In this regard, the current pandemic should remind the critical nature of independence in purchasing raw resources to cope with future dynamics. One of the causes of dependence is the lack of raw materials management, specifically from biological sources abundantly available. A significant advantage is directed towards natural excipients because large quantities of more affordable plants ensure sustained availability in nature. Therefore, this study highlighted the possibility of using excipients derived from natural resources that are commonly used yet underutilized in Indonesia, such as glucomannan (GM). Indonesia has the potential to produce GM, considering the high natural resources as its source. However, it has not been applied extensively in pharmaceutical preparations due to diverse uses in several countries' drug, food, and cosmetic industries. This study aimed to discuss the modifications of GM and their use as pharmaceutical excipients with better physical properties. Additionally, the potential of melinjo seeds that have not been widely used was also analyzed. Melinjo seeds can be used as a source of GM due to their fairly large polysaccharide of about 64.11%. This issue will promote national autonomy in developing novel pharmaceutical excipients derived from natural resources that are highly economical and innovative.
Keywords
Full Text:
PDFReferences
Abbaszadeh, A., Macnaughtan, W., Sworn, G., and Foster, T. J. (2016). New insights into xanthan synergistic interactions with konjac glucomannan: A novel interaction mechanism proposal. Carbohydrate Polymers, 144, 168–177. 10.1016/j.carbpol.2016.02.026
Al-Rudainy, B., Galbe, M., and Wallberg, O. (2020). Hemicellulose recovery from spent-sulfite-liquor: Lignin removal by adsorption to resins for improvement of the ultrafiltration process. Molecules, 25(15). 10.3390/molecules25153435
Alonso-Sande, M., Cuña, M., Remuñán-López, C., Teijeiro-Osorio, D., Alonso-Lebrero, J. L., and Alonso, M. J. (2006). Formation of new Glucomannan - Chitosan nanoparticles and study of their ability to associate and deliver proteins. Macromolecules, 39(12), 4152–4158. 10.1021/ma060230j
Alvarez-Manceñido, F., Landin, M., and Martínez-Pacheco, R. (2008). Konjac glucomannan/xanthan gum enzyme sensitive binary mixtures for colonic drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 69(2), 573–581. 10.1016/j.ejpb.2008.01.004
Alves, A., Miguel, S. P., Araujo, A. R. T. S., and Jes, D. (2020). Xanthan Gum – Konjac Glucomannan Blend Hydrogel. Polymers, 12(99), 1–15.
Ardhany, S. D., Puspitasari, Y., Meydawati, Y., and Novaryatiin, S. (2019). Extraction and Determination of Glucomannan Contents from Porang Tuber (Amorphophallus muelleri Blume) Using DNS Method. Jurnal Sains Dan Kesehatan, 2(2), 122–128.
Bhat, R., and Yahya, B. N. (2014). Evaluating belinjau (Gnetum gnemon L.) seed flour quality as a base for development of novel food products and food formulations. Food Chemistry, 156, 42–49. 10.1016/j.foodchem.2014.01.063
Boettger, J., Deussen, O., and Ziezold, H. (2011). ( 12 ) Patent Application Publication ( 10 ) Pub . No .: US 2011 / 0141115A1. 1(19), 1–6.
BPS. (2020). Produksi Buah-buahan Menurut Jenis Tanaman Menurut Provinsi, 2020. Available from: https://www.bps.go.id/indikator/indikator/view_data_pub/0000/api_pub/SGJsZ0s5RjRyTWN1eDNyUERzbTI0Zz09/da_05/1 [Accessed 17th September 2021].
Campestrini, L. H., Silveira, J. L. M., Duarte, M. E. R., Koop, H. S., and Noseda, M. D. (2013). NMR and rheological study of Aloe barbadensis partially acetylated glucomannan. Carbohydrate Polymers, 94(1), 511–519. 10.1016/j.carbpol.2013.01.020
Chen, H., Lan, G., Ran, L., Xiao, Y., Yu, K., Lu, B., Dai, F., Wu, D., and Lu, F. (2018). A novel wound dressing based on a Konjac glucomannan/silver nanoparticle composite sponge effectively kills bacteria and accelerates wound healing. Carbohydrate Polymers, 183, 70–80. 10.1016/j.carbpol.2017.11.029
Chen, J., Li, J., and Li, B. (2011). Identification of molecular driving forces involved in the gelation of konjac glucomannan: Effect of degree of deacetylation on hydrophobic association. Carbohydrate Polymers, 86(2), 865–871. 10.1016/j.carbpol.2011.05.025
Chivero, P., Gohtani, S., Yoshii, H., and Nakamura, A. (2015). Effect of xanthan and guar gums on the formation and stability of soy soluble polysaccharide oil-in-water emulsions. Food Research International, 70, 7–14. 10.1016/j.foodres.2015.01.025
Cuña, M., Alonso-Sande, M., Remunãn-López, C., Pivel, J. P., Alonso-Lebrero, J. L., and Alonso, M. J. (2006). Development of phosphorylated glucomannan-coated Chitosan nanoparticles as nanocarriers for protein delivery. Journal of Nanoscience and Nanotechnology, 6(9–10), 2887–2895. 10.1166/jnn.2006.435
Daglio, Y., Rodríguez, M. C., Prado, H. J., and Matulewicz, M. C. (2019). Paramylon and synthesis of its ionic derivatives: Applications as pharmaceutical tablet disintegrants and as colloid flocculants. Carbohydrate Research, 484, 107779. 10.1016/j.carres.2019.107779
Du, X., Li, J., Chen, J., and Li, B. (2012). Effect of degree of deacetylation on physicochemical and gelation properties of konjac glucomannan. Food Research International, 46(1), 270–278. 10.1016/j.foodres.2011.12.015
Erdemir, D., Daftary, V., Lindrud, M., Buckley, D., Lane, G., Malsbury, A., Tao, J., Kopp, N., S. Hsieh, D., Nikitczuk, W., and D. Engstrom, J. (2019). Design and Scale-up of a Co-processing Technology to Improve Powder Properties of Drug Substances. Organic Process Research & Development, 23(12), 2685–2698. 10.1021/acs.oprd.9b00354
Gao, H. X., He, Z., Sun, Q., He, Q., and Zeng, W. C. (2019). A functional polysaccharide film forming by pectin, chitosan, and tea polyphenols. Carbohydrate Polymers, 215, 1–7. 10.1016/j.carbpol.2019.03.029
Guerreiro, F., Pontes, J. F., Rosa da Costa, A. M., and Grenha, A. (2019). Spray-drying of konjac glucomannan to produce microparticles for an application as antitubercular drug carriers. Powder Technology, 342, 246–252. 10.1016/j.powtec.2018.09.068
Guerreiro, F., Swedrowska, M., Patel, R., Flórez-Fernández, N., Torres, M. D., Rosa da Costa, A. M., Forbes, B., and Grenha, A. (2021). Engineering of konjac glucomannan into respirable microparticles for delivery of antitubercular drugs. International Journal of Pharmaceutics, 604. 10.1016/j.ijpharm.2021.120731
He, H., Ye, J., Zhang, X., Huang, Y., Li, X., and Xiao, M. (2017). κ-Carrageenan/locust bean gum as hard capsule gelling agents. Carbohydrate Polymers, 175, 417–424. 10.1016/j.carbpol.2017.07.049
Ministry of Health of the Republic of Indonesia, (2013). Peta Jalan Pengembangan Bahan Baku Obat (Vol. 369, Issue 1). Available from: https://www.kemhan.go.id/itjen/wp-content/uploads/migrasi/peraturan/87.pdf [Accessed 25th August 2021].
Hongbo, T., Lan, W., Yanping, L., and Siqing, D. (2019). Effect of acidolysis and oxidation on structure and properties of konjac glucomannan. International Journal of Biological Macromolecules, 130, 378–387. 10.1016/j.ijbiomac.2019.02.048
Huang, Y. C., Chu, H. W., Huang, C. C., Wu, W. C., and Tsai, J. S. (2015). Alkali-treated konjac glucomannan film as a novel wound dressing. Carbohydrate Polymers, 117, 778–787. 10.1016/j.carbpol.2014.10.047
Kato, E., Tokunaga, Y., and Sakan, F. (2009). Stilbenoids Isolated from the Seeds of Melinjo (Gnetum gnemon L.) and Their Biological Activity. Journal of Agricultural and Food Chemistry, 57(6), 2544–2549. 10.1021/jf803077p
Korkiatithaweechai, S., Umsarika, P., Praphairaksit, N., and Muangsin, N. (2011). Controlled release of diclofenac from matrix polymer of chitosan and oxidized konjac glucomannan. Marine Drugs, 9(9), 1649–1663. 10.3390/md9091649
Koroskenyi, B., and McCarthy, S. P. (2001). Synthesis of acetylated konjac glucomannan and effect of degree of acetylation on water absorbency. Biomacromolecules, 2(3), 824–826. 10.1021/bm010014c
Kuang, Y., Chen, L., Zhai, J., Zhao, S., Xiao, Q., Wu, K., Qiao, D., and Jiang, F. (2021). Microstructure, thermal conductivity, and flame retardancy of konjac glucomannan based aerogels. Polymers, 13(2), 1–11. 10.3390/polym13020258
Liang, H., Ye, T., Zhou, B., Li, J., He, L., Li, Y., Liu, S., Chen, Y., and Li, B. (2015). Fabrication of gastric floating controlled release tablet based on konjac glucomannan. Food Research International, 72, 47–53. 10.1016/j.foodres.2015.02.014
Lin, X., Wu, Q., Luo, X., Liu, F., Luo, X., and He, P. (2010). Effect of degree of acetylation on thermoplastic and melt rheological properties of acetylated konjac glucomannan. Carbohydrate Polymers, 82(1), 167–172. 10.1016/j.carbpol.2010.04.053
Liu, C., Li, J., Li, K., Xie, C., and Liu, J. (2020). Oxidized konjac glucomannan-cassava starch and sucrose esters as novel excipients for sustained-release matrix tablets. International Journal of Biological Macromolecules, 156, 1045–1052. 10.1016/j.ijbiomac.2019.11.146
Liu, J., Xu, Q., Zhang, J., Zhou, X., Lyu, F., Zhao, P., and Ding, Y. (2015). Preparation, composition analysis and antioxidant activities of konjac oligo-glucomannan. Carbohydrate Polymers, 130, 398–404. 10.1016/j.carbpol.2015.05.025
Long, X. Y., Luo, X. G., Zou, N. W., and Ma, Y. H. (2011). Preparation and in vitro evaluation of Carboxymethyl konjac glucomannan coated 5-aminosalicylic acid tablets for colonic delivery. Advanced Materials Research, 152–153, 1712–1715. 10.4028/www.scientific.net/AMR.152-153.1712
Lu, M., Li, Z., Liang, H., Shi, M., Zhao, L., Li, W., Chen, Y., Wu, J., Wang, S., Chen, X., Yuan, Q., and Li, Y. (2015). Controlled release of anthocyanins from oxidized konjac glucomannan microspheres stabilized by chitosan oligosaccharides. Food Hydrocolloids, 51, 476–485. 10.1016/j.foodhyd.2015.05.036
Luan, J., Wu, K., Li, C., Liu, J., Ni, X., Xiao, M., Xu, Y., Kuang, Y., and Jiang, F. (2017). pH-Sensitive drug delivery system based on hydrophobic modified konjac glucomannan. Carbohydrate Polymers, 171, 9–17. 10.1016/j.carbpol.2017.04.094
Luo, P., Nie, M., Wen, H., Xu, W., Fan, L., and Cao, Q. (2018). Preparation and characterization of carboxymethyl chitosan sulfate/oxidized konjac glucomannan hydrogels. International Journal of Biological Macromolecules, 113, 1024–1031. 10.1016/j.ijbiomac.2018.01.101
Magalhães, G. A., Santos, C. M. W., Silva, D. A., Maciel, J. S., Feitosa, J. P. A., Paula, H. C. B., and de Paula, R. C. M. (2009). Microspheres of chitosan/carboxymethyl cashew gum (CH/CMCG): Effect of chitosan molar mass and CMCG degree of substitution on the swelling and BSA release. Carbohydrate Polymers, 77(2), 217–222. 10.1016/j.carbpol.2008.12.037
Maniruzzaman, M., Rana, M. M., Boateng, J. S., Mitchell, J. C., and Douroumis, D. (2013). Dissolution enhancement of poorly water-soluble APIs processed by hot-melt extrusion using hydrophilic polymers. Drug Development and Industrial Pharmacy, 39(2), 218–227. 10.3109/03639045.2012.670642
Melvin, J. F., and Stewart, C. M. (1969). The Chemical Composition of the Wood of Gnetum gnemon L.. Walter de Gruyter. 23(2). 10.1515/hfsg.1969.23.2.51
Mikkelson, A., Maaheimo, H., and Terhi, H. (2013). Hydrolysis of konjac glucomannan by Trichoderma reesei mannanase and endoglucanases Cel7B and Cel5A for the production of glucomannooligosaccharides. Biomass and Bioenergy, 372, 60–68.
Mun’Im, A., Munadhil, M. A., Puspitasari, N., Azminah, and Yanuar, A. (2017). Angiotensin converting enzyme inhibitory activity of melinjo (Gnetum gnemon L.) seed extracts and molecular docking of its stilbene constituents. Asian Journal of Pharmaceutical and Clinical Research, 10(3), 243–248. 10.22159/ajpcr.2017.v10i3.16108
Nair, S. B., and Jyothi, A. N. (2013). Cassava starch-konjac glucomannan biodegradable blend films: In vitro study as a matrix for controlled drug delivery. Starch/Staerke, 65(3–4), 273–284. 10.1002/star.201200070
Narang, A. S., and Boddu, S. H. (2015). Excipient applications in formulation design and drug delivery. Excipient Applications in Formulation Design and Drug Delivery, 1–681. 10.1007/978-3-319-20206-8
Nawawi, D. S., Syafii, W., Akiyama, T., and Matsumoto, Y. (2016). Characteristics of guaiacyl-syringyl lignin in reaction wood in the gymnosperm Gnetum gnemon L. Holzforschung, 70(7), 593–602. 10.1515/hf-2015-0107
Neto, G. R. J., Genevro, G. M., Paulo, L. de A., Lopes, P. S., de Moraes, M. A., and Beppu, M. M. (2019). Characterization and in vitro evaluation of chitosan/konjac glucomannan bilayer film as a wound dressing. Carbohydrate Polymers, 212, 59–66. 10.1016/j.carbpol.2019.02.017
Nurlela, Ariesta, N., Laksono, D. S., Santosa, E., and Muhandri, T. (2021). Characterization of glucomannan extracted from fresh porang tubers using ethanol technical grade. Molekul, 16(1), 1–8. 10.20884/1.jm.2021.16.1.632
Owusu, F. W. A., Boakye-Gyasi, M. E., Entsie, P., Bayor, M. T., and Ofori-Kwakye, K. (2021). Utilization of Pectin from Okra as Binding Agent in Immediate Release Tablets. BioMed Research International, 2021, 1–11. 10.1155/2021/6002286
Pan, Z., Meng, J., and Wang, Y. (2011). Effect of alkalis on deacetylation of konjac glucomannan in mechano-chemical treatment. Particuology, 9(3), 265–269. 10.1016/j.partic.2010.11.003
Pasaribu, G. T., Hastuti, N., Efiyanti, L., Waluyo, T. K., and Pari, G. (2020). Optimization of Glucomanan Purification Techniques in Porang Flour (Amorphophallus muelleri Blume). Jurnal Penelitian Hasil Hutan, 37(7), 197–203. 10.20886/jphh.2019.37.3.197-203
Pettolino, F. A., Walsh, C., Fincher, G. B., and Bacic, A. (2012). Determining the polysaccharide composition of plant cell walls. Nature Protocols, 7(9), 1590–1607. 10.1038/nprot.2012.081
Rintelen, v.K., Arida, E., and Häuser, C. (2017). A review of biodiversity-related issues and challenges in megadiverse Indonesia and other Southeast Asian countries. Research Ideas and Outcomes, 3. 10.3897/rio.3.e20860
Scopus. (2021). Advanced document search in Scopus. Available from: https://www.scopus.com/search/form.uri?display=basic#basic [Accessed 15th September 2021].
Singh, S., Nwabor, O. F., Ontong, J. C., and Voravuthikunchai, S. P. (2020). Characterization and assessment of compression and compactibility of novel spray-dried, co-processed bio-based polymer. Journal of Drug Delivery Science and Technology, 56(November 2019), 101526. 10.1016/j.jddst.2020.101526
Tang, W., Liu, D., Yin, J. Y., and Nie, S. P. (2020). Consecutive and progressive purification of food-derived natural polysaccharide: Based on material, extraction process and crude polysaccharide. In Trends in Food Science and Technology. (Vol. 99, pp. 76–87). 10.1016/j.tifs.2020.02.015
Tekade, B. W., and Yogita, A. (2013). Gums and Mucilages : Excipients for modified Drug Delivery System. Journal of Advanced Pharmacy Education & Research, 3(4), 359–367.
Wang, C., Li, B., Chen, T., Mei, N., Wang, X., and Tang, S. (2020). Preparation and bioactivity of acetylated konjac glucomannan fibrous membrane and its application for wound dressing. Carbohydrate Polymers, 229, 115404. 10.1016/j.carbpol.2019.115404
Wang, L. H., Huang, G. Q., Xu, T. C., and Xiao, J. X. (2019). Characterization of carboxymethylated konjac glucomannan for potential application in colon-targeted delivery. Food Hydrocolloids, 94(June 2018), 354–362. 10.1016/j.foodhyd.2019.03.045
Wang, M., He, W., Wang, S., and Song, X. (2015). Carboxymethylated glucomannan as paper strengthening agent. Carbohydrate Polymers, 125, 234–239. 10.1016/j.carbpol.2015.02.060
Wardhani, D. H., Puspitosari, D., Ashidiq, M. A., Aryanti, N., and Prasetyaningrum, A. (2017). Effect of deacetylation on functional properties of glucomannan. AIP Conference Proceedings, 1855(June 2017). AIP Publishing. 10.1063/1.4985490
Wardhani, D. H., Wardana, I. N., Ulya, H. N., Cahyono, H., Kumoro, A. C., and Aryanti, N. (2020). The effect of spray-drying inlet conditions on iron encapsulation using hydrolysed glucomannan as a matrix. Food and Bioproducts Processing, 123, 72–79. 10.1016/j.fbp.2020.05.013
Willför, S., Sjöholm, R., Laine, C., Roslund, M., Hemming, J., and Holmbom, B. (2003). Characterisation of water-soluble galactoglucomannans from Norway spruce wood and thermomechanical pulp. Carbohydrate Polymers, 52(2), 175–187. 10.1016/S0144-8617(02)00288-6
Wu, C., Sun, J., Jiang, H., Li, Y., and Pang, J. (2021). Construction of carboxymethyl konjac glucomannan/chitosan complex nanogels as potential delivery vehicles for curcumin. Food Chemistry, 362, 130242. 10.1016/j.foodchem.2021.130242
Wu, K., Zhu, Q., Qian, H., Xiao, M., Corke, H., Nishinari, K., and Jiang, F. (2018). Controllable hydrophilicity-hydrophobicity and related properties of konjac glucomannan and ethyl cellulose composite films. Food Hydrocolloids, 79, 301–309. 10.1016/j.foodhyd.2017.12.034
Xiao, J. X., Wang, L. H., Xu, T. C., and Huang, G. Q. (2019). Complex coacervation of carboxymethyl konjac glucomannan and chitosan and coacervate characterization. International Journal of Biological Macromolecules, 123, 436–445. 10.1016/j.ijbiomac.2018.11.086
Xiao, M., Dai, S., Wang, L., Ni, X., Yan, W., Fang, Y., Corke, H., and Jiang, F. (2015a). Carboxymethyl modification of konjac glucomannan affects water binding properties. Carbohydrate Polymers, 130, 1–8. 10.1016/j.carbpol.2015.05.001
Xiao, M., Dai, S., Wang, L., Ni, X., Yan, W., Fang, Y., Corke, H., and Jiang, F. (2015b). Carboxymethyl modification of konjac glucomannan affects water binding properties. Carbohydrate Polymers, 130, 1–8. 10.1016/j.carbpol.2015.05.001
Xu, K., Guo, M., Du, J., and Zhang, Z. (2019). Okra polysaccharide: Effect on the texture and microstructure of set yoghurt as a new natural stabilizer. International Journal of Biological Macromolecules, 133, 117–126. 10.1016/j.ijbiomac.2019.04.035
Xu, W., Wang, S., Ye, T., Jin, W., Liu, J., Lei, J., Li, B., and Wang, C. (2014). A simple and feasible approach to purify konjac glucomannan from konjac flour - Temperature effect. Food Chemistry, 158, 171–176. 10.1016/j.foodchem.2014.02.093
Yu, H., and Xiao, C. (2008). Synthesis and properties of novel hydrogels from oxidized konjac glucomannan crosslinked gelatin for in vitro drug delivery. Carbohydrate Polymers, 72(3), 479–489. 10.1016/j.carbpol.2007.09.023
Zhang, C., Chen, J. Da, and Yang, F. Q. (2014). Konjac glucomannan, a promising polysaccharide for OCDDS. In Carbohydrate Polymers. 104(1), pp. 175–181). 10.1016/j.carbpol.2013.12.081
Zhang, F., Liu, M., Mo, F., Zhang, M., and Zheng, J. (2017). Effects of acid and salt solutions on the pasting, rheology and texture of lotus root starch-konjac glucomannan mixture. Polymers, 9(12). 10.3390/polym9120695
Zhang, M., Cui, S. W., Cheung, P. C. K., and Wang, Q. (2007). Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity. In Trends in Food Science and Technology (Vol. 18, Issue 1, pp. 4–19). Elsevier. 10.1016/j.tifs.2006.07.013
Zhou, Y., Cao, H., Hou, M., Nirasawa, S., Tatsumi, E., Foster, T. J., and Cheng, Y. (2013). Effect of konjac glucomannan on physical and sensory properties of noodles made from low-protein wheat flour. Food Research International, 51(2), 879–885. 10.1016/j.foodres.2013.02.002
Zhu, W., Li, J., Lei, J., Li, Y., Chen, T., Duan, T., Yao, W., Zhou, J., Yu, Y., and Liu, Y. (2018). Silver nanoparticles incorporated konjac glucomannan-montmorillonite nacre-like composite films for antibacterial applications. Carbohydrate Polymers, 197, 253–259. 10.1016/j.carbpol.2018.06.005