Potensi Biji Duwet (Syzygium cumini L. (Skeels.)) Sebagai Imunomodulator Pendamping Kemoterapi: Sebuah Ulasan

Ahmad Syauqy Tafrihani, Christina Mutiara Putri Gono, Nyssa Natasia, Muthi Ikawati

Abstract

Mekanisme pertahanan sel kanker terhadap sistem imun tubuh merupakan ancaman bagi keberhasilan terapi kanker. Agen kemoterapi efektif dalam membantu proses eliminasi sel kanker, namun penggunaannya menginduksi imunosupresi. Ekstrak biji duwet (Syzygium cumini (L.) (Skeels.)) dan kandungan senyawanya dilaporkan memiliki berbagai aktivitas imunomodulator dan aktivitas antikanker. Namun, belum ada laporan yang mengulas potensi biji duwet sebagai agen imunomodulator pendamping kemoterapi kanker (ko-kemoterapi). Artikel ini disusun untuk mengulas potensi biji duwet sebagai imunomodulator pendamping kemoterapi. Berbagai literatur dari jurnal internasional dan sumber lain yang dipublikasikan mulai tahun 2005 ditelusuri dari database Pubmed, Scopus, GoogleScholar, dan lainnya. Berdasarkan studi literatur, ekstrak dan senyawa kandungan biji duwet, yaituasam galat dan mirisetin, dapat memodulasi sistem imun melalui berbagai jalur molekuler. Dapat disimpulkan bahwa biji duwet memiliki potensi untuk dikembangkan menjadi agen pendamping kemoterapi melalui aktivitas imunomodulatornya. Penelitian lebih lanjut pada model hewan uji kanker yang diberi ekstrak biji duwet dan kombinasinya dengan antikanker diperlukan untuk memvalidasi potensi tersebut.

Keywords

kanker; kemoterapi; duwet (Syzygium cumini); imunomodulator; kombinasi

Full Text:

PDF

References

Arun, R., Prakash, M.V.D., Abraham, S.K. dan Premkumar, K. (2011). Role of Syzygium cumini seed extract in the chemoprevention of in vivo genomic damage and oxidative stress. Journal of Ethnopharmacology, 134(2): pp.329-333. 10.1016/j.jep.2010.12.014.

Ayyanar, M. dan Subash-Babu, P. (2012). Syzygium cumini (L.) Skeels: a review of its phitochemical constituents and traditional uses. Asian Pacific Journal of Tropical Biomedicine, 2(3): pp.240-246. 10.1016/S2221-1691(12)60050-1.

Bagnyukova, T.V., Serebriiskii, I.G., Zhou, Y., Hopper-Borge, E.A., Golemis, E.A., dan Astsaturov, I. (2010). Chemotherapy and signaling: How can targeted therapies supercharge cytotoxic agents? Cancer Biology and Therapy, 10(9): pp.839-853. 10.4161/cbt.10.9.13738

Balyan, U. dan Sarkar, B. (2017). Aqueous extraction kinetics of phenolic compounds from jamun (Syzygium cumini L.) seeds. International Journal of Food Properties, 20(2): pp.372-389. 10.1080/10942912.2016.1163266.

Banerjee, J. dan Narendhirakannan, R.T. (2011). Phytochemical analyses, antibacterial, in vitro antioxidant and cytotoxic activities of ethanolic extract of Syzygium cumini (L.) seed extract. International Journal of Pharmaceutical Sciences and Research, 2(7): pp.1799-1806. 10.13040/IJPSR.0975-8232.2(7).1799-06.

Chen, L. dan Yu, J. (2016). Modulation of Toll-like receptor signaling in innate immunity by natural products. International Immunopharmacology, 37: pp.65-70. 10.1016/j.intimp.2016.02.005.

Galluzzi, L., Buqué, A., Kepp, O., Zitvogel, L. dan Kroemer, G. (2015). Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell, 28(6): pp.690-714. 10.1016/j.ccell.2015.10.012.

Gibbs, L., Bowen, R., Makris, A., UKBCM, dan Beresford, M. (2016). Preferences for chemotherapy side-effect profiles in breast cancer – the view of oncologists. Clinical Oncology, 28(5): E3-E4. 10.1016/j.clon.2016.01.022.

Gowri, S.S. dan Vasantha, K. (2010). Phytochemical screening and antibacterial activity of Syzygium cumini (L.) (Myrtaceae) leaves extracts. International Journal of PharmTech Research, 2(2): pp.1569-1573.

Huang, H., Pan, L., Pan, S. dan Song, M. (2018). The feasibility of using primary shrimp hemocyte culture to screen herbal immunostimulants. Aquaculture International, 26: pp.799-811. 10.1007/s10499-018-0238-2.

Hui-Chou, H.G., Olenczak, J.B., Drachenberg, C.B., Shea, S.M. dan Rodriguez, E.D. (2012). Short-term application of doxorubicin chemotherapy immunosuppressive side effects for composite tissue allotransplantation. Annals of Plastic Surgery, 68(2): pp.215-221. 10.1097/SAP.0b013e3182467f7b.

Imanuel, L.K., Sunarni, T., dan Herdwiani, W. (2021). Aktivitas sitotoksik dan ekspresi protein p53 dan bcl-2 ekstrak dan fraksi daun yakon (Smallanthus sonchifolius) terhadap sel kaknker T47D. Journal of Pharmaceutical Science and Clinical Research, 6(1): pp.74-81. 10.20961/jpscr.v6i1.39540.

Kementerian Kesehatan RI. (2019). Penyakit kanker di Indonesia berada pada urutan 8 di Asia Tenggara dan 23 di Asia. http://p2p.kemkes.go.id/penyakit-kanker-di-indonesia-berada-pada-urutan-8-di-asia-tenggara-dan-urutan-23-di-asia/ [20 September 2020].

Kesuma, D., Siswandono, Purwanto, B.T., dan Hardjono, S. (2018). Uji in silico aktivitas sitotoksik dan toksisitas senyawa turunan N-(benzoil)-N'-feniltiourea sebagai calon obat antikanker. Journal of Pharmaceutical Science and Clinical Research, 3(1): pp.11-11. 10.20961/jpscr.v3i1.16266.

Kim, H.-Y., Park, J., Lee, K.-H., Lee, D.-U., Kwak, J.-H., Kim, Y.S. dan Lee, S.-M. (2011). Ferulic acid protects against carbon tetrachloride-induced liver injury in mice. Toxicology, 282(3): pp.104-111. 10.1016/j.tox.2011.01.017.

Lee, S.N., Jin, S.M., Shin, H.S. dan Lim, Y.T. (2020). Chemical strategies to enhance the therapeutic efficacy of Toll-like receptor agonist based cancer immunotherapy. Accounts of Chemical Research, 53(10): pp.2081-2093. 10.1021/acs.accounts.0c00337.

Li, N., Sun, C., Zhou, B., Xing, H., Ma, D., Chen, G. dan Weng, D. (2014). Low concentration of quercetin antagonizes the cytotoxic effects of anti-neoplastic drugs in ovarian cancer. PLoS ONE, 9(7): e100314. 10.1371/journal.pone.0100314.

Liu, M. dan Guo, F. (2018). Recent updates on cancer immunotherapy. Precision Clinical Medicine, 1(2): pp.65-74. 10.1093/pcmedi/pby011.

Mastan, S.K., Saraseeruha, A., Gourishankar, V., Chaitanya, G., Raghunandan, N., Reddy, G.A. dan Kumar, K.E. (2008). Immunomodulatory activity of methanolic extract of Syzygium cumini seeds. Pharmacologyonline. 3: pp.895-903.

Pai, R.J., Valder, B., Palatty, P.L., Shivashankara, A.R. dan Baliga, M.S. (2013). Gastrointestinal protective effects of Eugenia jambolana Lam. (blackplum) and its phytochemicals, 369-382, in: Watson, R.R. and Preedy, V.R. (Eds.), Bioactive Food as Dietary Interventions for Liver and Gastrointestinal Disease. San Diego: Academic Press. 10.1016/B978-0-12-397154-8.00043-9.

Plants of the World Online (POWO). (2019). Syzygium cumini (L.) Skeels. http://www.plantsoftheworldonline.org/taxon/urn:lsid:ipni.org:names:601603-1 [20 September 2020].

Ramya, S., Neethirajan, K. dan Jayakumararaj, R. (2012). Profile of bioactive compounds in Syzygium cumini – a review. Journal of Pharmacy Research, 5(8): pp.4548-4553.

Rodrigues, K.A. da F., Amorim, L.V., Dias, C.N., Moraes, D.F.C., Carneiro, S.M.P., Carvalho, F.A. de A. (2015). Syzygium cumini (L.) Skeels essential oil and its major constituent α-pinene exhibit anti-Leishmania activity through immunomodulation in vitro. Journal of Ethnopharmacology, 160: pp.32-40. 10.1016/j.jep.2014.11.024.

Ruthurusamy, S.K., Dheeba, B., Hameed, S.S., dan Palanisamy, S. (2015). Anti-cancer and anti-oxidative potential of Syzygium cumini against breast cancer cell lines. Journal of Chemical and Pharmaceutical Research, 7(10): pp. 449-460.

Shruthi, S., Vijayalaxmi, K.K. dan Shenoy, K.B. (2018). Immunomodulatory effects of gallic acid against cyclophosphamide- and cisplatin-induced immunosuppression in Swiss Albino mice. Indian Journal of Pharmaceutical Sciences, 80(1): pp.150-160. 10.4172/pharmaceutical-sciences.1000340.

Singh, P., Bast, F. dan Singh, R.S. (2017). Natural compounds targeting transforming growth factor-β: in silico and in vitro study. Electronic Journal of Biology, 13(1): pp.6-13.

Syama, H.P., Arya, A.D., Dhanya, R., Nisha, P., Sundaresan, A., Jacob, E. dan Jayamurthy, P. (2017). Quantification of phenolics in Syzygium cumini seed and their modulatory role on tertiary butyl-hydrogen peroxide-induced oxidative stress in H9c2 cell lines and key enzymes in cardioprotection. Journal of Food Science and Technology, 54: pp.2115-2125. 10.1007/s13197-017-2651-3.

Travis, M.A. dan Sheppard, D. (2014). TGF- β activation and function in immunity. Annual Review of Immunology, 32: pp.51-82. 10.1146/annurev-immunol-032713-120257.

United States Departement of Agriculture. (2015). Natural Resources Conservation Service: Plant Profile Classification Syzygium cumini. https://plants.usda.gov/core/profile?symbol=SYCU [20 September 2020].

Wagner, M. dan Koyasu, S. (2019). Cancer immunoediting by innate lymphoid cells. Trends in Immunology, 40(5): pp. 415-430. 10.1016/j.it.2019.03.004.

World Health Organization (WHO). (2018). Cancer. https://www.who.int/news-room/fact-sheets/detail/cancer#:~:text=Cancer%20is%20the%20second%20leading,%20and%20middle-income%20countries [20 September 2020].

Wang, J., Zhang, C., Zhang, J., Xie, J., Yang, L., Xing, Y. dan Li, Z. (2020). The effects of quercetin on immunity, antioxidant indices, and disease resistance in zebrafish (Danio rerio). Fish Physiology and Biochemistry, 46: pp.759-770. 10.1007/s10695-019-00750-2.

Yadav, D.K., Khan, F. dan Negi, A.S. (2012). Pharmacophore modeling, molecular docking, QSAR, and in silico ADMET studies of gallic acid derivatives for immunomodulatory activity. Journal of Molecular Modeling, 18: pp.2513-2525. 10.1007/s00894-011-1265-3.

Yang, K., Zhang, L., Liao, P., Xiao, Z., Zhang, F., Sindaye, D., Xin, Z., Tan, C., Deng, J., Yin, Y. dan Deng, B. (2020). Impact of gallic acid on gut health: focus on the gut microbiome, immune response, and mechanisms of action. Frontiers in Immunology, 11: 580208. 10.3389/fimmu.2020.580208.

Zhang, X.-Y., Li, W.-G., Wu, Y.-J. dan Gao, M.-T. (2005). Amelioration of doxorubicin-induced myocardial oxidative stress and immunosuppression by grape seed proanthocyanidins in tumour-bearing mice. Journal of Pharmacy and Pharmacology, 57(8): pp.1043-1051. 10.1211/0022357056523.

Refbacks

  • There are currently no refbacks.