ANALYSIS OF NOZZLE AND HEAD DIAMETER VARIATION TOWARDS PELTON TYPE MICROHIDRO OUTPUT POWER

Ary Cahya Setyawan, Danar Susilo Wijanto, Herman Saputro

Abstract

Microhydro is a eco-friendly power plant for output capacity below 100 KW. Its simple construction and relatively inexpensive design costs are the reason why microhydro is more suitable to be used as a source of electrical energy, especially in isolated areas that are still difficult to reach by electricity of PLN. There are several factors that affect the output power of Pelton microhydro, such as volume flow rate, number of buckets, bucket shape, runner diameter, head, number of nozzle, and nozzle diameter. The head and diameter of the nozzle are the variables in this research. The purposes is to analyze the influence of head variation and nozzle diameter to the electrical power produced by Pelton turbine from simulation and experiment results, and then comparing both of the results. This research used Pelton turbine type microhydro with 22 pieces of bucket. The generator that used is a PMG 200 watts type with transmission ratio of pulley 1:2. The methods used were simulation method and experimental method with varying head and diameter of a nozzle. Variable taken in this research was head variation, nozzle diameter variation, and electric power generated by Pelton turbine. Head variation used was 1,6 m, and 2,6 m, while nozzle diameter variation used was 5 mm, 7 mm, 9 mm, and 11 mm. Software used to create fluid flow and rotation simulations is SolidWorks 2013, and the instruments for testing used tachometer, flowmeter, amperemeter and digital voltmeter. The results from two methods showed that the head variable was directly proportional to power. Whereas for the nozzle variation, turbine power increases linearly as the nozzle size increases to 11 mm in diameter. Head variation 2,6 m with 11 mm nozzle diameter resulted electrical power of 11,87 watts at the volume flow rate output of 0,96 x 10-3 m3/s with  269 rpm generator rotations for experiment result. Generator rotations for simulation result of the same variation is 442 rpm. The efforts to improve the electric power of a pelton turbine can be obtained from head and nozzle diameter

Keywords

Micro-hydro Pelton turbine Head nozzle diameter simulation electric power

Full Text:

PDF

References

Chounan, K. S., Manish, G. R. K., & Mieee, S. (2017). Modelling, Fabrication & Analysis of Pelton Turbine for Different Head and Materials. International Journal of Computational Engineering Research (IJCER), 1-17.

Damastuti, Anya P. (1997). Pembangkit Listrik Tenaga Mikrohidro. Teknologi. Wacana, No. 8.

Dandeker, M. M., dan Sharma, K. N. (1991). Pembangkit Listrik Tenaga Air. Terj. Setyadi, B., dan Sutjiningsih, D. Jakarta: UI-PRESS. (Buku asli diterbitkan 1979).

Dietzel. (1992). Turbin, Pompa, dan Kompresor. Terj. Sriyono dan Dakso. Jakarta: Erlangga.

Dinisari, M. C. (2016). Potensi Energi Terbarukan Indonesia Masih Besar. Bisnis Indonesia.

Firmansyah, Ifham. (2011). Studi Pembangunan Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) Dompyong 50 kW di Desa Dompyong, Bendungan, Trenggalek untuk Mewujudkan Desa Mandiri Energi (DME). Universitas Gajah Mada, Yogyakarta.

Hadimi, Supandi, dan Rohermanto, A. (2006). Rancang Bangun Model Turbin Pelton Mini sebagai Media Simulasi/Praktikum Mata Kuliah Konversi Energi dan Mekanika Fluida. Pontianak : Jurnal Ilmiah Semesta Teknika. 16-24.

JICA dan IBEKA. (2004). Manual Pembangunan PLTMH. Jakarta.

Kementerian Energi dan Sumber Daya Mineral. (2016). Program Strategis EBTKE dan Ketenagalistrikan. Jurnal Energi Media Komunikasi Kementerian Energi dan Sumber Daya Mineral, 2016 (2).

Kholifah, N., dan Setyawan, A. C. (2017). Performance of Pelton Turbine for Hydroelectric Generation in Varying Design Parameters. D. S. Wijayanto, H. Saputro & I. Widiastuti (Eds.). The 2nd Annual Applied Science and Engineering Conference, hlm. 3 – 4, Bandung, IOP Publishing.

Kholifah, N. (2017). Pengaruh Variasi Diameter Nozzle dan Head terhadap Hasil Output Daya Turbin Pelton. Surakarta: Universitas Sebelas Maret.

M. Edy Sunrto, Markus Eisenring. (1994). Turbin Pelton Mikro. Yogyakarta: MHPG ANDI OFFSET.

Nasir, B. A. (2013). Design of High Efficiency Pelton Turbine for Micro Hydropower Plant. International Journal of Electrical Engineering & Technology (IJEET), 171-183.

Pamungkas, S.F. (2017). Pengaruh Variasi Penambahan Fin terhadap Cut In Speed Turbin Angin Savonius Tipe S. Surakarta: Universitas Sebelas Maret.

Pamungkas, S.F. (2017). Performance ‘S’ Type Savonius Wind Turbine with Variation of Fin Addition on Blade. D. S. Wijayanto, H. Saputro & I. Widiastuti (Eds.). The 2nd Annual Applied Science and Engineering Conference, hlm. 4, Bandung, IOP Publishing.

Pamungkas, S.F., Wijayanto, D.S., Saputro, H. (2017). Pengaruh Variasi Penambahan Fin terhadap Cut In Speed Turbin Angin Savonius Tipe S. VANOS Journal Of Mechanical Engineering Education, 2 (1), 16.

Poea, C. S., Soplanit, G. D., dan Rantung, J. (2013). Perencanaan Turbin Air Mikro Hidro Jenis Pelton untuk Pembangkit Listrik di Desa Kali Kecamatan Pineleng dengan Head 12 Meter. Jurnal Universitas Sam Ratulangi Manado.

Prihastuty, E., dan Fahmadi, H. D. (2015). Perancangan Nossel dan Sistem Perpipaan pada Turbin Pelton. Jurnal Universitas 17 Agustus 1945 Cirebon.

Purnomo, Arfah Z. E., dan Suryanto, E. (2013). Analisa Ketinggihan dan Debit Air pada Pembangkit Listrik Tenaga

Mikrohidro pada Daerah Terpencil. Surabaya : Makalah Seminar Nasional Sains dan Teknologi Terapan.

Purnomo. (2013). Analisis Ketinggian dan Debit Air pada Pembangkit Listrik Tenaga Mikrohidro pada Daerah Terpencil. Surabaya: Institut Teknologi Sepuluh Nopember.

Rohermanto, Agus. (2007). Pembangkit Listrik Tenaga Mikrohidro (PLTMH), Jurnal Vokasi, 4 (1), 28 – 36.

Rohi, D. (2008). Alternatif Pembangkit Tenaga Listrik yang Ramah Lingkungan di Indonesia. Surabaya: EECCIS.

Sari, S. P., dan Fasha, R. (2013). Pengaruh Ukuran Diameter Nozzle 7 dan 9 mm terhadap Putaran Sudu dan Daya Listrik pada Turbin Pelton. Jurnal Universitas Gunadarma.

Soetarno. (1975). Sistem Listrik Mikrohidro untuk Melestarikan Desa. Yogyakarta: Universitas Gadjah Mada.

Supardi, dan Pramana, C. (2015). Kaji Eksperimental Pengaruh Variasi Diameter Nozzle dan Diameter Runner terhadap Daya dan Efisiensi Model Turbin Pelton. Mekanika Jurnal Teknik Mesin, 60-72.

Supardi, dan Prasetya, E. (2015). Nozzle dan Sudut Buang Sudu terhadap Daya dan Efisiensi Model Turbin Pelton di Lab. Fluida. Mekanika Jurnal Teknik Mesin.

Suwachid. 2006. Ilmu Turbin. Surakarta: UNS-Press

Refbacks

  • There are currently no refbacks.