A Comparative Study of Sound Resonance Using Arduino-Based Ultrasonic Sensors and Visualization Analysis with Python

Feri Iskandar, Yudhiakto Pramudya

Abstract

In the modern era, the study of sound resonance in physics laboratories has increasingly incorporated technological tools to improve the experimental process. While conventional approaches to resonance experiments remain common, they often face challenges related to equipment setup and limited real-time data analysis. This research compares conventional methods with Arduino-based techniques, combined with Python for data visualization and analysis, in sound resonance experiments. The integration of Arduino microcontrollers and ultrasonic sensors offers a more accessible and streamlined alternative to conventional resonance measurement techniques, facilitating improved data collection and interpretation. Data is gathered using PLX DAQ software connected to the Arduino system, with the results visualized and analyzed using Python tools. The experiments show that the average air column length when the water in the reservoir was lowered is 16.10 cm, with an error of 3.04%, and when the water was raised, the average length is 15.60 cm, with an error of 5.98%. A 512 Hz sound source was used to determine the fundamental frequency, revealing slight variations due to changes in the measurement distance. Specifically, the fundamental frequency was recorded as (528 ± 5) Hz when the water level was lowered and (545 ± 8) Hz when it was raised. This study highlights the positive role of technology in enhancing physics education and research, particularly in sound resonance studies.

Keywords

Arduino; Frequency; Python; Sound resonance; Ultrasonic sensor

Full Text:

PDF

References

Boimau, I., Irmawanto, R., & Taneo, M. F. (2019). Rancang Bangun Alat Ukur Laju Bunyi Di Udara Menggunakan Sensor Ultrasonik Berbasis Arduino. Cyclotron, 2(2). https://doi.org/10.30651/cl.v2i2.3253

Bu’ulolo, E., Mesran, Hasibuan, N. A., Aripin, S., Utomo, D. P., & Syahputra, R. (2023). Big Data Analysis dengan Python untuk Perguruan Tinggi. Alfabeta.

Budiarso, Z., Nurraharjo, E., Listiyono, H., Studi, P., Informatika, T., Informasi, F. T., Stikubank, U., Studi, P., Informatika, M., Informasi, F. T., & Stikubank, U. (2023). Rekayasa Alat Ukur Panjang Gelombang Suara Menggunakan Tabung Resonansi Berbasis Arduino Untuk Pengembangan Praktikum Fisika Dasar. JUPITER, 15(1), 237–246.

Halliday, D., Resnick, R., & Walker, J. (2018). Fundamentals of Physics (10th Editi). John Wiley & Sons.

Handayani, D. N. S., Pramudya, Y., Suparwoto, S., & Muchlas, M. (2018). The Application of Scilab Software in Frequency Mode Simulation on the Circular Membrane. Journal of Physics: Theories and Applications, 2(2), 83. https://doi.org/10.20961/jphystheor-appl.v2i2.31274

Ismailov, A. S., & Jo‘rayev, Z. B. (2022). Study of arduino microcontroller board. “Science and Education” Scientific Journal, 3(3), 172–179. www.openscience.uz

Jamil, M., Wahab, I. H. A., Kiswanto, & Alting, H. (2022). Pemograman Arduino dan Internet of Things. Deepublish.

Nurfitni, D., & Pramudya, Y. (2023). Studi Gaya Hambat GJB Pada Variasi Luas Permukaan Kertas Cupcake dengan Analisis Video & Python. Navigation Physics : Journal of Physics Education, 5(2).

Pratiwi, S. N., Cari, C., & Aminah, N. S. (2019). Pembelajaran IPA abad 21 dengan literasi sains siswa. Jurnal Materi Dan Pembelajaran …, 9, 34–42. https://jurnal.uns.ac.id/jmpf/article/view/31612%0A

Serway, R. A., & Jewett, J. W. (2004). Physics for Scientists and Engineers , Vol . I. In American Journal of Physics (6th ed., Vol. 44, Issue 9). Thomson Brooks/Cole. https://doi.org/10.1119/1.10359

Refbacks

  • There are currently no refbacks.