Automated Bird Deterrent System: A Review
Abstract
Bird pests pose a significant threat to agriculture, causing extensive crop damage and economic losses. Traditional bird repellent methods, such as scarecrows and loud noises, often lose their effectiveness over time as birds adapt. This paper reviews the development and effectiveness of an automated bird repellent system, integrating Internet of Things (IoT) and Artificial Intelligence (AI) technologies. The study used a systematic literature review (SLR) methodology, analyzing 20 articles published between 2015 and 2024. Key findings show that automated systems, utilizing sensors and AI algorithms such as YOLO, DenseNet, and Mask R-CNN, significantly improve bird detection and repellent accuracy. The DenseNet model, in particular, achieved a detection accuracy of 99.65%. The review highlights the need for further research to optimize sensor placement and assess the long-term impacts of this technology on bird behavior and agricultural ecosystems. This comprehensive review underscores the potential of automated bird repellent systems to improve crop protection and sustainability in agriculture.
Full Text:
PDFReferences
M. M. Mhandu, A. Musarurwa, and L. K. Gudukeya, “Design Of a Solar Automated Scarecrow,” Proc. IEOM Int. Conf. Smart Mobil. Veh. Electrif., pp. 440–451, 2023, doi: 10.46254/ev01.20230036.
N. S. Sayem et al., “IoT-based smart protection system to address agro-farm security challenges in Bangladesh,” Smart Agric. Technol., vol. 6, no. October, p. 100358, 2023, doi: 10.1016/j.atech.2023.100358.
A. Olugbenga, O. F. O, and O. D. Itakorode, “Development and Implementation of Arduino-based Birds Repellent for Farmers,” Int. J. Sci. Res., vol. 9, no. 5, 2020, doi: 10.21275/SR20512000949.
K. Blümel, F. Tagliaferri, and M. Kuhl, “Algorithm for calculating distance and sensor-object angle from raw data of ultra-low power, long-range ultrasonic time-of-flight range sensors,” Procedia CIRP, vol. 118, pp. 1061–1065, 2023, doi: 10.1016/j.procir.2023.06.182.
M. Lamane, M. Tabaa, and A. Klilou, “Classification of targets detected by mmWave radar using YOLOv5,” Procedia Comput. Sci., vol. 203, pp. 426–431, 2022, doi: 10.1016/j.procs.2022.07.056.
X. Yang, C. Wang, Z. Chen, and D. Wang, “Design of Airport Wireless Bird Repellent Monitoring System,” IOP Conf. Ser. Mater. Sci. Eng., vol. 768, no. 7, 2020, doi: 10.1088/1757-899X/768/7/072076.
E. B. Micaelo, L. G. P. S. Lourenço, P. D. Gaspar, J. M. L. P. Caldeira, and V. N. G. J. Soares, “Bird Deterrent Solutions for Crop Protection: Approaches, Challenges, and Opportunities,” Agric., vol. 13, no. 4, pp. 1–29, 2023, doi: 10.3390/agriculture13040774.
S. S. Baral, R. Swarnkar, A. V. Kothiya, A. M. Monpara, and S. K. Chavda, “Bird Repeller – A Review,” Int. J. Curr. Microbiol. Appl. Sci., vol. 8, no. 02, pp. 1035–1039, 2019, doi: 10.20546/ijcmas.2019.802.121.
I. Suleiman, A. Babawuya, and B. Salihu, “A Review of Bird Pest Repellent Systems in Farms a Review of Bird Pest Repellent Systems in Farms,” First Int. Bus. Manag. Conf., vol. 19, no. 1, pp. 1–13, 2021.
J. K. Enos, M. P. Ward, and M. E. Hauber, “A review of the scientific evidence on the impact of biologically salient frightening devices to protect crops from avian pests,” Crop Prot., vol. 148, no. June, p. 105734, 2021, doi: 10.1016/j.cropro.2021.105734.
S. T. DeLiberto and S. J. Werner, “Applications of chemical bird repellents for crop and resource protection: a review and synthesis,” Wildl. Res. , vol. 51, no. 2, 2024, doi: 10.1071/WR23062.
R. N. Brown and D. H. Brown, “Robotic laser scarecrows: A tool for controlling bird damage in sweet corn,” Crop Prot., vol. 146, no. November 2020, p. 105652, 2021, doi: 10.1016/j.cropro.2021.105652.
S. Bhusal, M. Karkee, U. Bhattarai, Y. Majeed, and Q. Zhang, “Automated execution of a pest bird deterrence system using a programmable unmanned aerial vehicle (UAV),” Comput. Electron. Agric., vol. 198, no. October 2020, p. 106972, 2022, doi: 10.1016/j.compag.2022.106972.
M. A. Ali, R. K. Dhanaraj, and S. Kadry, “AI-enabled IoT-based pest prevention and controlling system using sound analytics in large agricultural field,” Comput. Electron. Agric., vol. 220, no. March, p. 108844, 2024, doi: 10.1016/j.compag.2024.108844.
S. Bhusal, K. Khanal, S. Goel, M. Karkee, and M. . Taylor, “Bird deterrence in a vineyard using an unmanned aerial system (UAS).,” Trans. ASABE, vol. 62, no. 50, pp. 9–10, 2019.
W. M. W. Mohamed, M. N. M. Naim, and A. Abdullah, “The efficacy of visual and auditory bird scaring techniques using drone at paddy fields,” IOP Conf. Ser. Mater. Sci. Eng., vol. 834, no. 1, 2020, doi: 10.1088/1757-899X/834/1/012072.
R. N. Rohmah, Y. Oktafianto, Nurokhim, H. Supriyono, and A. Supardi, “Pest Control System on Agricultural Land Using Iot Electronic Controller,” J. Appl. Eng. Technol. Sci., vol. 5, no. 2, pp. 1011–1019, 2024, doi: 10.37385/jaets.v5i2.4592.
S. Zefi, S. Siswandi, E. Hesti, and C. Ciksadan, “Implementation of Appropriate Technology for Bird Pest Removal to Replace Scarecrow with Solar Cell Based on Internet of Thing at Usaha Tani Mandiri Kertapati Palembang,” Proc. 6th FIRST 2022 Int. Conf., pp. 400–406, 2023, doi: 10.2991/978-94-6463-118-0_41.
O. Arowolo, A. Adekunle, and J. Ade-omowaye, “A Real Time Image Processing Bird Repellent System Using Raspberry Pi,” FUOYE J. Eng. Technol., vol. 5, no. 2, pp. 101–108, 2020.
Y. C. Chen, J. F. Chu, K. W. Hsieh, T. H. Lin, and P. Z. Chang, “Automatic wild bird repellent system that is based on deep ‑ learning ‑ based wild bird detection and integrated with a laser rotation mechanism,” Sci. Rep., no. 0123456789, pp. 1–15, 2024, doi: 10.1038/s41598-024-66920-2.
P. Marcoň et al., “A system using artificial intelligence to detect and scare bird flocks in the protection of ripening fruit,” Sensors, vol. 21, no. 12, 2021, doi: 10.3390/s21124244.
C. G. Morley, P. Solaris, G. Quinn, K. E. Ross, and B. J. Peterson, “Precision pest control using purpose-built uncrewed aerial system (UAS) technology and a novel bait pod system,” Drone Syst. Appl., vol. 12, no. 1080, pp. 1–13, 2024, doi: 10.1139/dsa-2023-0104.
A. K. Werrell, P. E. Klug, R. N. Lipcius, and J. P. Swaddle, “A Sonic Net reduces damage to sunflower by blackbirds (Icteridae): Implications for broad-scale agriculture and crop establishment,” Crop Prot., vol. 144, no. October 2020, p. 105579, 2021, doi: 10.1016/j.cropro.2021.105579.
A. Romero, E. S. D. la Cruz, A. Ochoa, and A. Hernández, “Biomimetric Drone for Controlling Bird Pests and Optimizing Citriculture,” Res. Comput. Sci., vol. 149, no. 6, pp. 61–74, 2020, [Online]. Available: http://www.cic.ipn.mx
A. Ritti and J. Chandrashekhara, “Detecting Intended Target Birds and Using Frightened Techniques in Crops to Preserve Yield,” Int. J. Innov. Res. Comput. Sci. Technol., no. 5, pp. 24–27, 2024.
Refbacks
- There are currently no refbacks.