Enhancing Face Detection Performance in Low-Light Conditions Using NIR Thermal Imaging and Image Morphology
Abstract
Full Text:
PDFReferences
[1] P. Sonawane, H. Sirsath, P. Gadhakar, S. Khedkar, and S.A. Chiwhane, “Drunk Person Identification Using Thermal Infrared Images,” International Journal of Advanced Research in Computer Communication Engineering, vol. 7, no. 5, pp. 181–184, 2018, doi: 10.1504/IJESDF.2012.049747.
[2] D. N. Parmar and B. B. Mehta, “Face Recognition Methods & Applications,” International Journal of Computer Technology & Applications, vol. 4, no. 1, p. 1, 2013.
[3] J. B. Dowdall, I. Pavlidis, and G. Bebis, “Face Detection in the Near-IR Spectrum,” Journal of Image and Vision Computing, vol. 21, no. 7, p. 565, 2003, doi: 10.1016/S0262-8856(03)00055-6.
[4] Julham, S. S. T. Hutagalung, K. C. Simalango, and S. Lumbantobing, "The Effectiveness of OpenCV-Based Face Detection In Low-Light Environments," Journal of Informatics and Telecommunication Engineering, vol. 7, no. 1, p. 209, 2023, doi: 10.31289/jite.v7i1.9851
[5] H. Mohsin and S. H. Abdullah, “Human Face Detection using Skin Color Segmentation and Morphological Operations,” Journal of Al-Nisour University College, vol. 7, p. 63, 2018.
[6] Y. Kang and W. Pan, “A Novel Approach of Low-Light Image Denoising for Face Recognition,” Advances in Mechanical Engineering, vol. 6, 2014, doi: 10.1155/2014/256790.
[7] A. Gyaourova, G. Bebis, and I. Pavlidis, “Fusion of Infrared and Visible Image for Face Recognition,” European Conference on Computer Vision, pp. 456–468, 2004, doi: 10.1007/978-3-540-24673-2_37.
[8] B. Martinez, X. Binefa, and M. Pantic, “Facial Component Detection in Thermal Imagery,” in IEEE Conference Computer Society Conference, European, 2010, pp. 48–54, doi: 10.1109/CVPRW.2010.5543605.
[9] L. L. Chambino, J. S. Silva, and A. Bernardino, “Multispectral Facial Recognition: A review,” in IEEE Access, vol. 8, 2020, doi: 10.1109/ACCESS.2020.3037451.
[10] E. Bishoff, C. Godfrey, M. McKay, and E. Byler, “Quantifying the Robustness of Deep Multispectral Segmentation Models Against Natural Perturbations and Data Poisoning,” 2023, doi: 10.1117/12.2663498.
[11] T. Bourlai and B. Cukic, “Multi-Spectral Face Recognition: Identification of People in Difficult Environments,” Algorithms, Technologies, and Applications for Multispectral and Hyperspectral Imaging XXIX Conference, 2012. doi: 10.1109/ISI.2012.6284307.
[12] H. Fitriyah and E. R. Widasari, "Face Detection of Thermal Imaging in Various Standing Body-Pose using Facial Geometry," Indonesian Journal of Computing and Cybernetics Systems, vol. 14, no. 4, pp. 407–416, 2020. doi: 10.22146/ijccs.59672.
[13] M. Kristo and M. Ivasic-Kos, “An Overview of Thermal Face Recognition Methods,” in 41st International Convention on Information and Communication Technology, Electronics and Microelectronics, 2018, p. 5, doi: 10.23919/MIPRO.2018.8400200
[14] E. Stach, “Structural Morphology and Self-Organization,” in Conference: Design and Nature, 2010, vol. 138, p. 30, doi: 10.2495/DN100041
[15] D. Kang, H. Han, A. K. Jain, S.W. Lee, “Nighttime face recognition at large standoff: Cross-distance and cross-spectral matching.” Pattern Recognition, vol. 47, pp. 3750–3766, 2014, doi: 10.1016/j.patcog.2014.06.004
[16] K. Panetta, G. Chen, S. Rajeev, S. Agaian, Y. Zhou, and S. Wei,
“A Comprehensive Database for Benchmarking Imaging Systems,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 5, pp. 1051–1065, 2018, doi: 10.1109/TPAMI.2018.2884458.
[17] J. M. S. Waworundeng and R. R. I. Suwu, "Implementation of Face Recognition in People Monitoring Access In-and-Out of Crystal Dormitory, Klabat University," Cogito Smart Journal, vol. 9, no. 1, p. 159, 2023, doi: 10.31154/cogito.v9i1.500.156-170
[18] S. Sunardi, A. Fadlil, and D. Prayogi, "Face Recognition Using Machine Learning Algorithm Based on Raspberry Pi 4b," International Journal of Artificial Intelligence Research, vol. 6, no. 1, 2022, doi: 10.29099/ijair.v7i1.321
[19] M. P. Damayanti and H. Sumarti, "Analysis of Axial CT-Scan Image of COVID-19 Patients Based in Gender using the Otsu Thresholding Method," Journal of Natural Sciences and Mathematics Research, vol. 6, no. 1, p. 7, 2020.
[20] A. M. Raid, W. M. Khedr, M. A. El-dosuky, and M. Aoud, “Image Restoration Based on Morphological Operations,” International Journal of Computer Science, Engineering and Information Technology, vol. 4, no. 3, pp. 10–11, 2014, doi: 10.5121/ijcseit 2014.4302
[21] K. Sreedhar and B. Panlal, “Enhancement of Images Using Morphological Transformations,” International Journal of Computer Science & Information Technology, vol. 4, no. 1, p. 38, 2012, doi: 10.5121/ijcsit.2012.4103
[22] D. Dussol, P. Druault, B. Mallat, and S. Delacroix, “Automatic Dynamic Mask Extraction for PIV Images Containing an Unsteady Interface, Bubbles, and a Moving Structure,” Comptes Rendus Mécanique, vol. 344, no. 7, p. 470, 2016, doi: 10.1016/j.crme.2016.03.005.
[23] A. B. Prasetyo et al., "Comparative Analysis of Image on Several Edge Detection Techniques," Journal of Technology Education Management Informatics, vol. 12, no. 1, p. 111, 2023, doi: 10.18421/TEM121-15
[24] E. J. Leavline and D. A. A. G. Singh, “Salt and Pepper Noise Detection and Removal in Gray Scale Images: An Experimental Analysis,” International Journal of Signal Processing, Image Processing and Pattern Recognition, vol. 6, no. 5, p. 347, 2013, doi: 10.14257/ijsip.2013.6.5.30
[25] B. U. Fahnun, A. B. Mutiara, J. Harlan, and E. P. Wibowo, "Feature Identification of Hepatic Cancer Ultrasound Image using Gaussian Filtering Combined with Intensity Adjustment," International Journal of Engineering Research & Technology, vol. 8, no. 9, p. 517, 2019, doi:10.17577/IJERTV8IS090137.
Refbacks
- There are currently no refbacks.



