Effectiveness of Biofilmed Biofertilizer with Balanced Phosphate Fertilizer Dosage in Suppressing Purple Blotch Disease Intensity and Increasing Garlic Yield on Andisol Soil in Tawangmangu

Mohammad Fikri Halim Madjid, Hadiwiyono Hadiwiyono, Sudadi Sudadi, Susilo Hamberg Poromarto

Abstract


Garlic productivity in Indonesia is often constrained by purple blotch disease (Alternaria porri) . A sustainable control alternative involves utilizing biofilmed biofertilizer (BiO2) combined with phosphate (P) fertilizer . This study aimed to assess the effectiveness of balancing BiO2 and P dosage in suppressing purple blotch disease intensity and increasing garlic yield on Andisol soil in Tawangmangu . The research was conducted from May to September 2024 using a single-factor Completely Randomized Design (CRD) with four treatments: P0 (0% P + 100% NK + BiO2), P1 (50% P + 100% NK + BiO2), P2 (100% P + 100% NK + BiO2), and P3 (100% NPK without BiO2) . Data were analyzed using ANOVA followed by DMRT at a 95% significance level . Results indicated that combining BiO2 with P fertilizer was highly effective; it suppressed leaf spot disease intensity by 49.47% and increased garlic yields by 20.91% compared to the control . This confirms that integrating BiO2 with appropriate P fertilization is a viable strategy for improving garlic productivity in Andisol soil .

Full Text:

PDF
rticle

References


  1. Brewster JL. Onions and other vegetable alliums. Crop Production Science in Horticulture. 2008;15:1–132.
  2. Azis M, Suryana EA. Jejak upaya dan prospek pengembangan bawang putih di Indonesia. J Risalah Kebijak Pertan Lingkung. 2024;11(3):236–242.
  3. Ahmed AA, Ahmed SI, Kasem ES. Purple blotch incidence and garlic productivity as affected by irrigation intervals and plant density. Egypt J Agric Res. 2024;102(2):291–301.
  4. Havlickova L, Faltus M, Fellner M, et al. Growth–defense tradeoffs in plants: the role of hormones and implications for agriculture. Horm Behav. 2021;133:105001.
  5. Rojas EC, Jensen B, Jørgensen HJL, et al. Plant growth conditions determine the outcome of plant–microbe interactions with beneficial fungi independent of jasmonic acid perception. Front Plant Sci. 2020;11:588965.
  6. Gaunt RE. The relationship between plant disease severity and yield. Annu Rev Phytopathol. 1995;33(1):119–144.
  7. Kumar A, Meena M. Plant growth-promoting rhizobacteria (PGPR): mechanisms and role in plant health and production. In: Recent Advances in Plant Protection. 2022. p. 111–131.
  8. Wilson SG, Lambert JJ, Dahlgren RA. Seasonal phosphorus dynamics in a volcanic soil of northern California. Soil Sci Soc Am J. 2016;80(5):1222–1230.
  9. Newland T, Madden LV, Paul PA. Canopy microclimate, host density, and foliar disease dynamics in wheat. Phytopathology. 2022;112(10):2150–2164.
  10. Matimati I, de Vos M, van der Heijden JA. The role of phosphorus in plant defense against pathogenic fungi. J Exp Bot. 2021;72(1):108–121.
  11. Bhattacharyya PN, Jha DK. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol. 2012;28(4):1327–1350.
  12. Billah M, Khan M, Bano A, et al. Phosphorus and phosphate-solubilizing bacteria: keys for sustainable agriculture. Geomicrobiol J. 2019;36(10):904–916.
  13. Mahanty T, Bhattacharjee S, Goswami M, et al. Biofertilizers: a potential approach for sustainable agriculture development. Environ Sci Pollut Res. 2017;24(4):3315–3335.
  14. Fageria NK. Nutrient interactions in crop plants. J Plant Nutr. 2001;24(8):1269–1290.
  15. Jiang Y, Chen F, Chen Z, et al. The role of phosphorus in plant resistance to pests and diseases. Front Plant Sci. 2021;12:782428.
  16. Mishra J, Arora NK. Bioformulations for plant growth promotion and combating phytopathogens: a sustainable approach. In: Bioformulations for Sustainable Agriculture. Springer; 2016. p. 3–33.
  17. Munadhifah F. Prevalensi dan pola infeksi jamur dermatofita pada petani: literature review. Sekolah Tinggi Ilmu Kesehatan; 2020.
  18. Gomiero T. Soil degradation, land scarcity and food security: reviewing a complex challenge. Sustainability. 2016;8(3):281.
  19. Asra RH, Advinda L, Anhar A, et al. Peran plant growth promoting rhizobacteria (PGPR) dalam pertanian berkelanjutan. J Serambi Biol. 2024;9(1):1–7.
  20. Lehmann J, Kleber M. The contentious nature of soil organic matter. Nature. 2015;528(7580):60–68.
  21. Karomah AN. Pengaruh kombinasi pupuk organik cair limbah ampas tahu dan AB mix terhadap pertumbuhan dan hasil tanaman bawang putih (Allium sativum L.) varietas Tawangmangu dengan hidroponik sistem substrat. Malang: UIN Maulana Malik Ibrahim Press; 2022.
  22. Ding W, Cong W, Lambers H. High phosphorus supply alters nutrient uptake and distribution in plants: a meta-analysis. J Plant Nutr Soil Sci. 2022;185(5):629–640.
  23. Tang G, Wang Y, Lu Z, et al. Effects of combined nitrogen–phosphorus on biomass accumulation, allocation, and allometric growth relationships in Pinus yunnanensis seedlings after top pruning. Plants. 2024;13(17):2450.
  24. Han M, Okamoto M, Beatty PH, et al. Nitrogen use efficiency in crops: achievements and challenges. Trends Food Sci Technol. 2021;118:560–571.
  25. Oldfield EE, Bradford MA, Wood SA. Global meta-analysis of the relationship between soil organic matter and crop yields. SOIL. 2019;5(1):15–32.
  26. Abbas Q, Shafique A. Integrated use of organic and inorganic fertilizers improves soil health, growth and yield of wheat (Triticum aestivum L.). Adv Agric Biol. 2019;2(1):48–54.
  27. Ballester C, Mora-Sala B, Izquierdo-García L, et al. Phosphorus nutrient status shapes plant defence responses. Mol Plant Pathol. 2023;24(7):717–731.
  28. Kudoyarova GR, Arkhipova TN, Korshunova TY. Phytohormone-producing bacteria in the regulation of plant development under stress conditions. Plants (Basel). 2019;8(9):307.
  29. Sari MP, Setiawati MR. Pengaruh aplikasi pupuk hayati dan dosis pupuk N, P, K terhadap serapan hara dan hasil bawang merah. J Hortik Indones. 2021;12(1):25–34.
  30. Adesemoye AO, Torbert HA, Kloepper JW. Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol. 2009;58(4):921–929.
  31. Sharma SB, Ayyed RZ, Trivedi MH, et al. Phosphate-solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus. 2013;2(1):587.
  32. Nasir MW, Toth Z. Effect of drought stress on potato production: a review. Agronomy. 2022;12(3):635.
  33. Malhotra H, Sharma S, Pandey R. Phosphorus nutrition: plant growth and development. In: Plant Physiology. IntechOpen; 2018.




DOI: https://doi.org/10.20961/jbb.v5i2.114347

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



Print ISSN: 2775-5223
Online ISSN: 2808-3229
Website: https://jurnal.uns.ac.id/jbb
Email: jurnal.biotek.biodiv@mail.uns.ac.id
Published by: Universitas Sebelas Maret
Jl. Ir. Sutami Street, No. 36A, Surakarta, Jawa Tengah 57126