Sentiment Analysis of Netizens on Constitutional Court Rulings in the 2024 Presidential Election
Abstract
Abstract
Online conversations among netizens play an important role in forming collective opinions and views about important events, including judicial decisions such as those taken by the Constitutional Court (MK). This research explores sentiment analysis of the Constitutional Court’s decisions, especially in the context of the presidential election, using the Support Vector Machine (SVM), Logistic Regression, and Naive Bayes algorithms. Previous studies on public sentiment toward the Constitutional Court’s decision provide a basis. Still, this research focuses on a different context, analysing sentiment toward the Constitutional Court’s decision in the 2024 presidential election dispute. This study adopts an experimental methodology, involving several key stages such as data collection through Twitter web scraping, labelling, pre-processing, TF-IDF weighting, and algorithm testing. Evaluation using a confusion matrix shows comparable accuracy among SVM, Logistic Regression, and Naive Bayes, with SVM and Logistic Regression demonstrating superior precision and F1 scores. Negative sentiment carries greater weight than neutral and positive sentiment, highlighting potential social tensions and the need for effective communication and deeper analysis to understand the root causes of negativity. The SVM and logistic regression algorithms have proven effective in understanding public sentiment towards the Constitutional Court’s decisions in a political context, providing valuable insights for understanding the dynamics of public opinion.
Keywords
Full Text:
PDFReferences
Afandi, M., & Isnaini, K. N. (2024). Analyzing Public Trust in Presidential Election Surveys: A Study Using SVM and Logistic Regression on Social Media Comments. Journal of Computer Science an Engineering (JCSE), 5(1), 1-11. https://doi.org/10.36596/jcse.v5i1.791
Alkabkabi, A., & Taileb, M. (2019). Ensemble Learning Sentiment Classification for Un-labeled Arabic Text. ICC 2019: Advances in Data Science, Cyber Security and IT Applications, (pp. 203–210). Cham. https://doi.org/10.1007/978-3-030-36365-9_17
Ariannor, W., Kusuma, E. A., Fadilah, F., & Arsyad, M. (2024). Analyzing User Sentiments in Motor Vehicle Tax Applications Using the Naïve Bayes Algorithm. Progresif: Jurnal Ilmiah Komputer, 20(1), 91-101. https://doi.org/10.35889/progresif.v20i1.1694
Atteveldt, W. v., Velden, M. A., & Boukes, M. (2021). The Validity of Sentiment Analysis: Comparing Manual Annotation, Crowd-Coding, Dictionary Approaches, and Machine Learning Algorithms. Communication Methods and Measures, 15(2), 121-140. https://doi.org/10.1080/19312458.2020.1869198
Bale, A. S., Ghorpade, G., Naveen, N., S, R., Kamalesh, S., R, R., & S, R. B. (2022). Web Scraping Approaches and their Performance on Modern Websites. 2022 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC), (pp. 956-959). Coimbatore, India. https://doi.org/10.1109/ICESC54411.2022.9885689
Fahmy, M. M. (2022). Confusion Matrix in Binary Classification Problems: A Step-by-Step Tutorial. Journal of Engineering Research (ERJ), 6(5), T0-T12. https://doi.org/10.21608/erjeng.2022.274526
Hariyanti, Y., Kacung, S., & Santoso, B. (2024). Analisis Sentimen Terhadap Putusan Mahkamah Konstitusi Tentang Batasan Umur Capres Dan Cawapres Menggunakan Metode Naïve Bayes. Multidisciplinary Indonesian Center Journal (MICJO), 1(1), 517-525. https://doi.org/10.62567/micjo.v1i1.61
Husen, R. A., Astuti, R., Marlia, L., Rahmaddeni, R., & Efrizoni, L. (2023). Sentiment Analysis of Public Opinion on Twitter Toward BSI Bank Using Machine Learning Algorithms. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 3(2), 211-218. https://doi.org/10.57152/malcom.v3i2.901
Johal, S. K., & Mohana, R. (2020). Effectiveness of Normalization Over Processing of Textual Data Using Hybrid Approach Sentiment Analysis. International Journal of Grid and High Performance Computing (IJGHPC), 12(3), 43-56. https://doi.org/10.4018/IJGHPC.2020070103
Liu, B. (2022). Sentiment Analysis and Opinion Mining. Toronto: Springer Nature.
Muzaki, A., & Witanti, A. (2021). Sentiment Analysis Of The Community In The Twitter To The 2020 Election In Pandemic Covid-19 By Method Naive Bayes Classifier. Jurnal Teknik Informatika (JUTIF), 2(2), 101-107. https://doi.org/10.20884/1.jutif.2021.2.2.51
Ningsih, W., Alfianda, B., Rahmaddeni, R., & Wulandari, D. (2024). Perbandingan Algoritma SVM dan Naïve Bayes dalam Analisis Sentimen Twitter pada Penggunaan Mobil Listrik di Indonesia. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(2), 556-562. https://doi.org/10.57152/malcom.v4i2.1253
Novak, P. K., Smailović, J., Sluban, B., & Mozetič, I. (2015). Sentiment of Emojis. PLoS ONE, 10(12), 1-22. https://doi.org/10.1371/journal.pone.0144296. https://doi.org/10.1371/journal.pone.0144296
Oktavia, D. (2023). Analisis Sentimen Terhadap Penerapan Sistem E-Tilang Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (SVM). KLIK: Kajian Ilmiah Informatika dan Komputer, 4(1), 407-417. https://doi.org/10.30865/klik.v4i1.1040
Othman, S., Alshalwi, S., & Caushi, E. (2022). Sentiment of EmojiSets: How Emoji Sequences Improve Sentiment Cognition. 2022 IEEE 21st International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC), (hal. 72-79). Toronto. https://doi.org/10.1109/ICCICC57084.2022.10101644
Ratnawati, T., & Iljas, N. (2021). Twitting the Public Sentiment on the Jakarta Online Zoning System. IJIE (Indonesian Journal of Informatics Education), 5(1), 28-36. https://doi.org/10.20961/ijie.v5i1.49718
Ririanti, N. P., & Purwinarko, A. (2021). Implementation of Support Vector Machine Algorithm with Correlation-Based Feature Selection and Term Frequency Inverse Document Frequency for Sentiment Analysis Review Hotel. Scientific Journal of Informatics, 8(2), 297-303. https://doi.org/10.15294/sji.v8i2.29992
Singgalen, Y. A. (2021). Pemilihan Metode dan Algoritma dalam Analisis Sentimen di Media Sosial : Sistematic Literature Review. Journal of Information Systems and Informatics, 3(2), 278-302. https://doi.org/10.33557/journalisi.v3i2.125
Sujana, Y. (2023). A Comparative Study of Machine Learning Models for Sentiment Analysis of Dana App Reviews. IJIE (Indonesian Journal of Informatics Education), 7(2), 161-166. https://doi.org/10.20961/ijie.v7i2.93132
Tanggraeni, A. I., & Sitokdana, M. N. (2022). Analisis Sentimen Aplikasi E-Government Pada Google Play Menggunakan Algoritma Naïve Bayes. Jurnal Teknik Informatika dan Sistem Informasi, 9(2), 785-795. https://doi.org/10.35957/jatisi.v9i2.1835
Vig, E. V., Kumar, V., Trehan, E. M., & Sharma, E. R. (2022). An Evaluation of Sentiment Analysis Techniques, Processes and Challenges. 2022 International Conference on Fourth Industrial Revolution Based Technology and Practices (ICFIRTP), (pp. 145-149). Uttarakhand, India. https://doi.org/10.1109/ICFIRTP56122.2022.10059420
Wang, Q. (2022). Support Vector Machine Algorithm in Machine Learning. 2022 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), (pp. 750-756). Dalian, China. https://doi.org/10.1109/ICAICA54878.2022.9844516
Widłak, T. (2022). Trust and Trustworthiness as Judicial Virtues. Krytyka Prawa. Niezależne Studia nad Prawem, 14(4), 151-166. https://doi.org/10.7206/kp.2080-1084.562
Yuan, J., Wu, Y., Lu, X., Zhao, Y., Qin, B., & Liu, T. (2020). Recent advances in deep learning based sentiment analysis. Science China Technological Sciences, 63, 1947-1970. https://doi.org/10.1007/s11431-020-1634-3
Yutika, C. H., Adiwijaya, A., & Faraby, S. A. (2021). Analisis Sentimen Berbasis Aspek pada Review Female Daily Menggunakan TF-IDF dan Naïve Bayes. Jurnal Media Informatika Budidarma, 5(2), 422-430. https://doi.org/10.30865/mib.v5i2.2845