A Comparative Study of Machine Learning Models for Sentiment Analysis of Dana App Reviews
Abstract
Keywords
Full Text:
PDFReferences
Alshdaifat, E., Alshdaifat, D., Alsarhan, A., Hussein, F., & El-Salhi, S. M. F. S. (2021). The Effect of Preprocessing Techniques, Applied to Numeric Features, on Classification Algorithms’ Performance. Data, 6(2), 11. https://doi.org/10.3390/data6020011
Baccouche, A., Garcia-Zapirain, B., & Elmaghraby, A. (2018). Annotation Technique for Health-Related Tweets Sentiment Analysis. 2018 IEEE International Symposium on Signal Processing and Information Technology, ISSPIT 2018, 382–387. https://doi.org/10.1109/ISSPIT.2018.8642685
Balakrishnan, V., Selvanayagam, P. K., & Yin, L. P. (2020). Sentiment and Emotion Analyses for Malaysian Mobile Digital Payment Applications. ACM International Conference Proceeding Series, 67–71. https://doi.org/10.1145/3388142.3388144
Brauwers, G., & Frasincar, F. (2023). A Survey on Aspect-Based Sentiment Classification. ACM Computing Surveys, 55(4), 1–37. https://doi.org/10.1145/3503044
Chakraborty, I., Kim, M., & Sudhir, K. (2022). Attribute Sentiment Scoring with Online Text Reviews: Accounting for Language Structure and Missing Attributes. Journal of Marketing Research, 59(3), 600–622. https://doi.org/10.1177/00222437211052500
Chollet, F., & others. (2015). Keras.
Fu, B., Lin, J., Liy, L., Faloutsos, C., Hong, J., & Sadeh, N. (2013). Why people hate your App - Making sense of user feedback in a mobile app store. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Part F128815, 1276–1284. https://doi.org/10.1145/2487575.2488202
Handani, S. W., Saputra, D. I. S., Hasirun, Arino, R. M., & Ramadhan, G. F. A. (2019). Sentiment Analysis for Go-Jek on Google Play Store. Journal of Physics: Conference Series, 1196(1), 012032. https://doi.org/10.1088/1742-6596/1196/1/012032
Hermanto, Kuntoro, A. Y., Asra, T., Pratama, E. B., Effendi, L., & Ocanitra, R. (2020). Gojek and Grab User Sentiment Analysis on Google Play Using Naive Bayes Algorithm And Support Vector Machine Based Smote Technique. Journal of Physics: Conference Series, 1641(1), 012102. https://doi.org/10.1088/1742-6596/1641/1/012102
Islam, M. R. (2014). Numeric rating of Apps on Google Play Store by sentiment analysis on user reviews. 2014 International Conference on Electrical Engineering and Information & Communication Technology, 1–4. https://doi.org/10.1109/ICEEICT.2014.6919058
JoMingyu. (2019). google-play-scraper. https://github.com/JoMingyu/google-play-scraper
Kandhro, I. A., Jumani, S. Z., Ali, F., Shaikh, Z. U., Arain, M. A., & Shaikh, A. A. (2020). Performance Analysis of Hyperparameters on a Sentiment Analysis Model. Engineering, Technology & Applied Science Research, 10(4), 6016–6020. https://doi.org/10.48084/etasr.3549
Kristiyanti, D. A., Putri, D. A., Indrayuni, E., Nurhadi, A., & Umam, A. H. (2020). E-Wallet Sentiment Analysis Using Naïve Bayes and Support Vector Machine Algorithm. Journal of Physics: Conference Series, 1641(1), 012079. https://doi.org/10.1088/1742-6596/1641/1/012079
Pai, H.-T., Lai, H.-W., Wang, S.-L., Wu, M.-F., & Chuang, Y.-T. (2017). Recommendations for mobile applications. Proceedings of the 1st International Conference on Internet of Things and Machine Learning, 1–6. https://doi.org/10.1145/3109761.3109771
Paullada, A., Raji, I. D., Bender, E. M., Denton, E., & Hanna, A. (2021). Data and its (dis)contents: A survey of dataset development and use in machine learning research. Patterns, 2(11), 100336. https://doi.org/10.1016/j.patter.2021.100336
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel V. and Thirion, B., Grisel, O., Blondel, M., Prettenhofer P. and Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
Ranjan, S., & Mishra, S. (2020). Comparative Sentiment Analysis of App Reviews. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 1–7. https://doi.org/10.1109/ICCCNT49239.2020.9225348
Ruder, S., Peters, M. E., Swayamdipta, S., & Wolf, T. (2019). Transfer Learning in Natural Language Processing. Proceedings of the 2019 Conference of the North, 15–18. https://doi.org/10.18653/v1/N19-5004
Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11), 2673–2681. https://doi.org/10.1109/78.650093
Singla, Z., Randhawa, S., & Jain, S. (2017). Statistical and sentiment analysis of consumer product reviews. 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 1–6. https://doi.org/10.1109/ICCCNT.2017.8203960