A Comparative Study of Digital Image Segmentation Algorithms for Acute Myeloid Leukemia M1 White Blood Cells Images
Abstract
Keywords
Full Text:
PDFReferences
Bell, A., & Sallah, S. (n.d.). Bell & Sallah, 2005.pdf (7th ed.). Abbott. A Promise for Life.
Chan, T. F., Yezrielev Sandberg, B., & Vese, L. A. (2000). Active contours without edges for vector-valued images. Journal of Visual Communication and Image Representation, 11(2), 130–141. https://doi.org/10.1006/jvci.1999.0442
Chen, X., Pan, J., Wang, S., Hong, S., Hong, S., & He, S. (2019). The epidemiological trend of acute myeloid leukemia in childhood: A population-based analysis. Journal of Cancer, 10(20), 4824–4835. https://doi.org/10.7150/jca.32326
Devi, S. S., Roy, A., Sharma, M., & Laskar, R. H. (2016). kNN Classification Based Erythrocyte Separation in Microscopic Images of Thin Blood Smear. Proceedings - International Conference on Computational Intelligence and Networks, 2016-Janua, 69–72. https://doi.org/10.1109/CINE.2016.19
Gonzalez, R. C., & Woods, R. E. (2008). Digital Image Processing Third Edition (Third Edit). Prentice Hall, Pearson.
Harjoko, A., Ratnaningsih, T., Suryani, E., Wiharto, Palgunadi, S., & Prakisya, N. P. T. (2018). Classification of acute myeloid leukemia subtypes M1, M2 and M3 using active contour without edge segmentation and momentum backpropagation artificial neural network. MATEC Web of Conferences, 154. https://doi.org/10.1051/matecconf/201815401041
Mulkal. (n.d.). Implementasi Algoritma Region Growing untuk Segmentasi Retakan Bidang Batuan. Implementasi Algoritma Region Growing Untuk Segmentasi Retakan Bidang Batuan, (7).
Prakisya, N. P. T., Esti, S., & Wiharto. (2013). Pemanfaatan Seed Region Growing Segmentation dan Momentum Backpropagation Neural Network untuk Klasifikasi Jenis Sel Darah Putih. (May), 1–11.
Rajpurohit, S., Patil, S., Choudhary, N., Gavasane, S., & Kosamkar, P. (2018). Identification of Acute Lymphoblastic Leukemia in Microscopic Blood Image Using Image Processing and Machine Learning Algorithms. 2018 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2018, (Cll), 2359–2363. https://doi.org/10.1109/ICACCI.2018.8554576
Sachin, P., & Kumar, R. Y. (2017). Detection and Classification of Blood Cancer from Microscopic Cell Images Using SVM KNN and NN Classifier. International Journal of Advance Research, 3(6), 315–324. Retrieved from www.ijariit.com
Salat, J., & Achmady, S. (2018). Minimalisasi Distorsi Dari Segmentasi Citra Metode Otsu Menggunakan Fuzzy Clustering. ILKOM Jurnal Ilmiah, 10(1), 80–85. https://doi.org/10.33096/ilkom.v10i1.234.80-85
Setiawan, A., Harjoko, A., Ratnaningsih, T., Suryani, E., Wiharto, & Palgunadi, S. (2018). Classification of cell types in Acute Myeloid Leukemia (AML) of M4, M5 and M7 subtypes with support vector machine classifier. 2018 International Conference on Information and Communications Technology, ICOIACT 2018, 2018-Janua(Cml), 45–49. https://doi.org/10.1109/ICOIACT.2018.8350822
Shah, S., Abaza, A., Ross, A., & Ammar, H. (2006). AUTOMATIC TOOTH SEGMENTATION USING ACTIVE CONTOUR WITHOUT EDGES. 2006 Biometrics Symposium, 0–5.
Shaikh Mohammed Bilal, N., & Deshpande, S. (2018). Computer aided leukemia detection using digital image processing techniques. RTEICT 2017 - 2nd IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology, Proceedings, 2018-Janua(1), 344–348. https://doi.org/10.1109/RTEICT.2017.8256613
Suryani, E., Wiharto, Palgunadi, S., & Prakisya, N. P. T. (2017). Classification of Acute Myelogenous Leukemia (AML M2 and AML M3) using Momentum Back Propagation from Watershed Distance Transform Segmented Images. Journal of Physics: Conference Series, 801(1). https://doi.org/10.1088/1742-6596/801/1/012044
Suryani, E., Wiharto, W., & Wahyudiani, K. N. (2016). Identifikasi Anemia Thalasemia Betha (?) Mayor Berdasarkan Morfologi Sel Darah Merah. Scientific Journal of Informatics, 2(1), 15–27. https://doi.org/10.15294/sji.v2i1.4525
Tong, J., Shi, H., Wu, C., Jiang, H., & Yang, T. (2018). Skewness correction and quality evaluation of plug seedling images based on Canny operator and Hough transform. Computers and Electronics in Agriculture. https://doi.org/10.1016/j.compag.2018.10.035
Vaishnnave, M. P., Suganya Devi, K., Srinivasan, P., & Arutperumjothi, G. (2019). Detection and classification of groundnut leaf diseases using KNN classifier. 2019 IEEE International Conference on System, Computation, Automation and Networking, ICSCAN 2019, 1–5. https://doi.org/10.1109/ICSCAN.2019.8878733