Real-Time Emotion Recognition in Online Learning Using Google Teachable
Abstract
Keywords
Full Text:
PDFReferences
Bosch, N. (2016). Detecting student engagement: Human versus machine. Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization, 317–320. https://doi.org/10.1145/2930238.2930371
Calvo, R. A., & D’Mello, S. (2010). Affect detection: An interdisciplinary review of models, methods, and their applications. IEEE Transactions on Affective Computing, 1(1), 18–37. https://doi.org/10.1109/T-AFFC.2010.1
Chen, Y., & He, J. (2022). Deep Learning-Based Emotion Detection. Journal of Computer and Communications, 10(02), 57–71. https://doi.org/10.4236/jcc.2022.102005
D’Mello, S., & Graesser, A. (2012). Dynamics of affective states during complex learning. Learning and Instruction, 22(2), 145–157. https://doi.org/10.1016/j.learninstruc.2011.10.001
Ding, Y., & Xing, W. (2022). Emotion recognition and achievement prediction for foreign language learners under the background of network teaching. Frontiers in Psychology, 13, 1017570. https://doi.org/10.3389/fpsyg.2022.1017570
Hakim, G. J. P., Simangunsong, G. A., Ningrat, R. W., Rabika, J. C., Rusafni, M. R., Giri, E. P., & Mindara, G. P. (2024). Real-Time Facial Emotion Detection Application with Image Processing Based on Convolutional Neural Network (CNN). International Journal of Electrical Engineering, Mathematics and Computer Science, 1(4), 27–36. https://doi.org/10.62951/ijeemcs.v1i4.123
Kurz, T. L., Jayasuriya, S., Swisher, K., Mativo, J., Pidaparti, R., & Robinson, D. T. (2024). The Impact of Teachable Machine on Middle School Teachers’ Perceptions of Science Lessons after Professional Development. Education Sciences, 14(4), 417. https://doi.org/10.3390/educsci14040417
Li, S., Ji, M., Chen, M., & Chen, L. (2024). Facial length and angle feature recognition for digital libraries. PLoS ONE, 19(7), e0306250. https://doi.org/10.1371/journal.pone.0306250
Llurba, C., & Palau, R. (2024). Real-Time Emotion Recognition for Improving the Teaching–Learning Process: A Scoping Review. Journal of Imaging, 10(12), 313. https://doi.org/10.3390/jimaging10120313
Florestiyanto, M. Y. (2024). Emotion Recognition for Improving Online Learning Environments: A Systematic Review of the Literature. Journal of Electrical Systems, 20(S4), 1860–1873. https://doi.org/10.52783/jes.2255
Pekrun, R. (2024). Control-Value Theory: From Achievement Emotion to a General Theory of Human Emotions. Educational Psychology Review, 36(3), 97. https://doi.org/10.1007/s10648-024-09909-7
Qi, Y., Zhuang, L., Chen, H., Han, X., & Liang, A. (2024). Evaluation of Students’ Learning Engagement in Online Classes Based on Multimodal Vision Perspective. Electronics, 13(1), 149. https://doi.org/10.3390/electronics13010149
Rathod, M., Dalvi, C., Kaur, K., Patil, S., Gite, S., Kamat, P., Kotecha, K., Abraham, A., & Gabralla, L. A. (2022). Kids’ Emotion Recognition Using Various Deep-Learning Models with Explainable AI. Sensors, 22(20), 8066. https://doi.org/10.3390/s22208066
Salloum, S. A., Alomari, K. M., Alfaisal, A. M., Aljanada, R. A., & Basiouni, A. (2025). Emotion recognition for enhanced learning: using AI to detect students’ emotions and adjust teaching methods. Smart Learning Environments, 12(1), 1–25. https://doi.org/10.1186/s40561-025-00374-5
Savchenko, A. V. (2021). Facial expression and attributes recognition based on multi-task learning of lightweight neural networks. 2021 IEEE 19th International Symposium on Intelligent Systems and Informatics (SISY), 119–124. https://doi.org/10.1109/SISY52375.2021.9582508
Ye, F. (2022). Emotion Recognition of Online Education Learners by Convolutional Neural Networks. Computational Intelligence and Neuroscience, 2022, 4316812. https://doi.org/10.1155/2022/4316812
Yuvaraj, R., Mittal, R., Prince, A. A., & Huang, J. S. (2025). Affective Computing for Learning in Education: A Systematic Review and Bibliometric Analysis. Education Sciences, 15(1), 65. https://doi.org/10.3390/educsci15010065
Zhou, Q. (2023). Application of AI Technology in Online Platforms Based on Cognitive Emotion Regulation. Frontiers in Artificial Intelligence and Applications, 378, 262–271. https://doi.org/10.3233/FAIA231030








