Knowledge Discovery Based on Sentiment Analysis of Public Perceptions About Generative AI on X
Abstract
Keywords
Full Text:
PDFReferences
Agustina, D. A., Subanti, S., & Zukhronah, E. (2021). Implementasi Text Mining Pada Analisis Sentimen Pengguna Twitter Terhadap Marketplace di Indonesia Menggunakan Algoritma Support Vector Machine. Indonesian Journal of Applied Statistics, 3(2), 109–116. https://doi.org/10.13057/ijas.v3i2.44337
Ariannor, W., Alshalwi, S. M. A. B., & Susarianto, B. (2024). Sentiment Analysis of Netizens on Constitutional Court Rulings in the 2024 Presidential Election. IJIE (Indonesian Journal of Informatics Education), 8(2), 90–98. https://doi.org/10.20961/ijie.v8i2.94614
Arowosegbe, A., Alqahtani, J. S., & Oyelade, T. (2024). Perception of generative AI use in UK higher education. Frontiers in Education, 9, 1463208. https://doi.org/10.3389/feduc.2024.1463208
Desai, D. R., & Riedl, M. (2024). Between Copyright and Computer Science: The Law and Ethics of Generative AI. arXiv. https://arxiv.org/abs/2408.08272
Doogan, C., & Buntine, W. (2021). Topic Model or Topic Twaddle? Re-evaluating Semantic Interpretability Measures. Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 3824–3848. https://doi.org/10.18653/v1/2021.naacl-main.300
Egger, R., & Yu, J. (2022). A Topic Modeling Comparison Between LDA, NMF, Top2Vec, and BERTopic to Demystify Twitter Posts. Frontiers in Sociology, 7, 886498. https://doi.org/10.3389/fsoc.2022.886498
Geiger, C. (2024). Elaborating a Human Rights-Friendly Copyright Framework for Generative AI. IIC - International Review of Intellectual Property and Competition Law, 55(7), 1129–1165. https://doi.org/10.1007/s40319-024-01481-5
Ghimire, A., & Edwards, J. (2024). Generative AI Adoption in Classroom in Context of Technology Acceptance Model (TAM) and the Innovation Diffusion Theory (IDT). arXiv. http://arxiv.org/abs/2406.15360
Grootendorst, M. (2022). BERTopic: Neural topic modeling with a class-based TF-IDF procedure. arXiv. http://arxiv.org/abs/2203.05794
Hasan Emon, M. M. (2023). Insights into technology adoption: A systematic review of framework, variables and items. Information Management and Computer Science, 6(2), 55–61. https://doi.org/10.26480/imcs.02.2023.55.61
Ibrahim, F., Münscher, J.-C., Daseking, M., & Telle, N.-T. (2025). The technology acceptance model and adopter type analysis in the context of artificial intelligence. Frontiers in Artificial Intelligence, 7, 1496518. https://doi.org/10.3389/frai.2024.1496518
Islam, G., & Greenwood, M. (2024). Generative Artificial Intelligence as Hypercommons: Ethics of Authorship and Ownership. Journal of Business Ethics, 192(4), 659–663. https://doi.org/10.1007/s10551-024-05741-9
Karas, B., Qu, S., Xu, Y., & Zhu, Q. (2022). Experiments with LDA and Top2Vec for embedded topic discovery on social media data—A case study of cystic fibrosis. Frontiers in Artificial Intelligence, 5, 948313. https://doi.org/10.3389/frai.2022.948313
Krishnan, A. (2023). Exploring the Power of Topic Modeling Techniques in Analyzing Customer Reviews: A Comparative Analysis. arXiv. http://arxiv.org/abs/2308.11520
Kristianto, K., Ramadhan, A. B., & Marsetyo, F. D. (2021). Media Sosial dan Connective Action: Studi Kasus Penggunaan Twitter sebagai Ruang Solidaritas selama Pandemi COVID-19. Journal of Social Development Studies, 2(1), 1–13. https://doi.org/10.22146/jsds.1037
Miyazaki, K., Murayama, T., Uchiba, T., An, J., & Kwak, H. (2023). Public Perception of Generative AI on Twitter: An Empirical Study Based on Occupation and Usage. arXiv. http://arxiv.org/abs/2305.09537
Novalia, V., Ditha Tania, K., Meiriza, A., & Wedhasmara, A. (2024). Knowledge Discovery of Application Review Using Word Embedding’s Comparison with CNN-LSTM Model on Sentiment Analysis. 2024 International Conference on Electrical Engineering and Computer Science (ICECOS), 234–238. https://doi.org/10.1109/ICECOS63900.2024.10791113
Nurlanuly, A. T. (2025). Sentiment analysis of texts from social networks based on machine learning methods for monitoring public sentiment. arXiv. http://arxiv.org/abs/2502.17143
Pranatawijaya, V. H., Sari, N. N. K., Rahman, R. A., Christian, E., & Geges, S. (2024). Unveiling User Sentiment: Aspect-Based Analysis and Topic Modeling of Ride-Hailing and Google Play App Reviews. Journal of Information Systems Engineering and Business Intelligence, 10(3), 328–339. https://doi.org/10.20473/jisebi.10.3.328-339
Pratiwi, M. D., & Tania, K. D. (2025). Knowledge Discovery Through Topic Modeling on GoPartner User Reviews Using BERTopic, LDA, and NMF. Journal of Applied Informatics and Computing, 9(1), 1–7. https://doi.org/10.30871/jaic.v9i1.8782
Rahimi, H., Hoover, J. L., Mimno, D., Naacke, H., Constantin, C., & Amann, B. (2023). Contextualized Topic Coherence Metrics. arXiv. https://doi.org/10.48550/arXiv.2305.14587
Rüdiger, M., Antons, D., Joshi, A. M., & Salge, T.-O. (2022). Topic modeling revisited: New evidence on algorithm performance and quality metrics. PLOS ONE, 17(4), e0266325. https://doi.org/10.1371/journal.pone.0266325
Sengar, S. S., Hasan, A. B., Kumar, S., & Carroll, F. (2024). Generative artificial intelligence: a systematic review and applications. Multimedia Tools and Applications, 84(21), 23661–23700. https://doi.org/10.1007/s11042-024-20016-1
Singh, S., & Strzelecki, A. (2025). Academics as adopters of generative AI: an application of diffusion of innovations theory. Education and Information Technologies. Advance online publication. https://doi.org/10.1007/s10639-025-13835-8
Suhendra, S., & Selly Pratiwi, F. (2024). Peran Komunikasi Digital dalam Pembentukan Opini Publik: Studi Kasus Media Sosial. Iapa Proceedings Conference, 293–305. https://doi.org/10.30589/proceedings.2024.1059
Sujana, Y. (2024). A Comparative Study of Machine Learning Models for Sentiment Analysis of Dana App Reviews. IJIE (Indonesian Journal of Informatics Education), 7(2). https://doi.org/10.20961/ijie.v7i2.93132
Utami, H. (2022). Analisis Sentimen dari Aplikasi Shopee Indonesia Menggunakan Metode Recurrent Neural Network. Indonesian Journal of Applied Statistics, 5(1), 31–41. https://doi.org/10.13057/ijas.v5i1.56825
Zharif Mustaqim, I., Melani Puspasari, H., Tri Utami, A., Syalevi, R., & Ruldeviyani, Y. (2024). Assessing public satisfaction of public service application using supervised machine learning. IAES International Journal of Artificial Intelligence (IJ-AI), 13(2), 1608–1618. https://doi.org/10.11591/ijai.v13.i2.pp1608-1618








