Real-Time Weigh In Motion (WIM) Monitoring System Based on Optoelectronics and Whatsapp Gateway

Fatimah Nur Hidayah, Agus Jamaldi, Samuel Ardhi Krisitiawan

Abstract

The increasing mobility of motorized vehicles, such as trucks, has positively contributed to regional growth and connectivity in Indonesia. However, this development has also introduced significant challenges, particularly road damage caused by overloaded vehicles. Such damage not only jeopardizes the safety of road users but also incurs substantial economic costs due to infrastructure maintenance and repair. This research utilizes a real-time Weigh-In-Motion (WIM) monitoring system based on optoelectronic technology and a WhatsApp gateway. By combining the precision of optoelectronic sensors with the accessibility of communication through WhatsApp, this system aims to accurately and promptly detect overloaded vehicles. The study focuses on integrating the real-time WIM monitoring system with optoelectronic devices and WhatsApp-based communication. The methodology involves applying varying loads to the fiber optic sensor system, ranging from 1 kg to 10 kg, with loading time variations of 100 ms, 250 ms, 500 ms, 750 ms, and 1000 ms. The programming aspect uses Arduino and Virtual Basic (VB) to support the hardware system for real-time detection by the optoelectronic components. The results demonstrate that the developed fiber optic sensor performs optimally, as evidenced by the data trendline showing alignment at the same point during both ascending and descending conditions. Furthermore, the system successfully provides user notifications via WhatsApp when detecting threshold data at a load of 6 kg crossing the fiber optic sensor system.

Keywords

Real-time; WIM; loads; fiber optic sensors; and WhatsApp

Full Text:

PDF

References

1 bps.go.id. Jumlah Kendaraan Bermotor Menurut Provinsi dan Jenis Kendaraan (unit), 2022. 2023.

2 bpjt.pu.go.id/. DAMPAK DARI KENDARAAN OVER DIMENSION OVER LOADING (ODOL) YANG MELINTAS DI JALAN TOL [Internet]. 2022 [cited 2023 Dec 21]. Online: https://bpjt.pu.go.id/berita/dampak-dari-kendaraan-over-dimension-over-loading-odol-yang-melintas-di-jalan-tol

3 Fadly I, Widarto H. ANALISIS KERUSAKAN DINI PERKERASAN LENTUR AKIBAT BEBAN BERLEBIH (OVERLOAD) PADA RUAS JALAN POROS PINRANG POLEWALI MANDAR. Jurnal Rekayasa Teknik. 2020;1–12.

4 Anwar S, Tamin OZ, Najid. Vehicle Influence Simulation Over Dimension Overload on Road Conditions. Review of International Geographical Education Online. 2021 Mar 1;11(2):68–79.

5 Utomo J, Hatmoko D, Setiadji H, Wibowo MA. Investigating causal factors of road damage: a case study. MATEC Web of Conferences [Internet]. 2019;1–6.

6 Hazifa, Nurdin A, Kumalasari D. Analisa Dampak Beban Kendaraan terhadap Kerusakan serta Umur Rencana Jalan. Jurnal Teknik. 2022;16(2):137–43.

7 Sutrisno W, Dapa Beti K, Rera Wowa P, Sulistyorini D. ANALISIS DAMPAK BEBAN BERLEBIH (OVERLOAD)a KENDARAAN TERHADAP UMUR RENCANA PERKERASAN JALAN MENGUNAKAN METODE AASHTO (STUDI KASUS: JALAN YOGYAKARTA-PRAMBANAN).

8. Jalalul Akbar S, Fithra H, dewi S. EVALUASI TINGKAT KERUSAKAN JALAN AKIBAT MUATAN BERLEBIH PADA RUAS JALAN LAMPEUNERUT-BILUY-SIBREH KABUPATEN ACEH BESAR (STA 07+800 s/d STA 09+800) [Internet]. Vol. 12, TECHSI. 2020 [cited 2023 Dec 21].

9. Rifai I. ANALYSIS OF THE EFFECTS OF OVERLOADING ON THE AGE OF THE TOLL ROAD CASE STUDY TANGERANG-MERAK KM 72 S/D KM 77. Neutron [Internet]. 2020 Jul 20;20(1). Online: https://ejournal.worldconference.id/index.php/neutron

10. Gupta S, Upadhyaya V. Automated Vehicle Detection Using Optical Fiber Communication.

11. Dhingra A. Fiber Optic Sensors: A Leading Trend in Sensor Technology Fiber Optic Sensors: A Leading Trend in Sensor Technology Akshaya Dhingra* 1, Vikas Sindhu 2, Anil Sangwan 3, Fiber Optic Sensors: A Leading Trend in Sensor [Internet]. Vol. 17, Journal of Archaeology of Egypt/Egyptology. Online: https://www.researchgate.net/publication/351451708

12. Chen SZ, Wu G, Feng DC, Zhang L. Development of a Bridge Weigh-in-Motion System Based on Long-Gauge Fiber Bragg Grating Sensors. Journal of Bridge Engineering. 2018 Sep;23(9).

13. Kara De Maeijer P, Luyckx G, Vuye C, Voet E, Van Den Bergh W, Vanlanduit S, et al. Fiber optics sensors in asphalt pavement: State-of-the-art review. Vol. 4, Infrastructures. MDPI Multidisciplinary Digital Publishing Institute; 2019.

14. Chen SZ, Wu G, Feng DC. Development of a bridge weigh-in-motion method considering the presence of multiple vehicles. Eng Struct. 2019 Jul 15; 191:724–39.

15. Gaira A. Vehicle Overloading: A Review. Int J Res Appl Sci Eng Technol. 2020 Jul 31;8(7):7–10.

16. Du C, Dutta S, Kurup P, Yu T, Wang X. A review of railway infrastructure monitoring using fiber optic sensors. Vol. 303, Sensors and Actuators, A: Physical. Elsevier B.V.; 2020.

17. Yulias Rofianingrum M, Widiyatmoko B, Khamimatul Ula R. Vehicle Speed Calculation Using Weigh-in-Motion Sensor Based on Fiber Optic. 2021.

18. Funnell AC, Thomas PJ. Design of a Flexible Weight Sensor Using Optical Fibre Macrobending. Sensors. 2023 Jan 12;23(2):912.

19. Keiser G. Scilab Code for Optical Fiber Communication [Internet]. 2011. Online: http://spoken-tutorial.org/NMEICT-Intro.

20. Hidayah FN, Budi WS, Adi K, Supardjo. Design of crack detection system for concrete-built infrastructure based on fiber optic sensors. In: AIP Conference Proceedings. 2018.

21. Hidayah FN, Atmoko NT. Fiber Optic Sensor Based WIM System Innovation for Implementing Zero Over Dimension Overload. INDONESIAN JOURNAL OF APPLIED PHYSICS. 2024 May 2;14(1):106.

22. Pires RF, Bonifácio VDB. 2019+6+2+38-46. 2019 Jul 11 [cited 2025 Jan 2];6(2):38–46. Online: https://pubs.thesciencein.org/journal/index.php/jmns/article/view/235/164

Refbacks

  • There are currently no refbacks.