Identification of Shale Layer in Offshore Field of North East Java Basin for Non-Conventional Oil and Gas Exploration

Ordas Dewanto, Nanda Paquita Syaharani, Darsono Darsono, Andy Setyo Wibowo

Abstract

Non-conventional hydrocarbon exploration is one way to develop shale potential to increase oil and gas reserves in Indonesia. Shale is a rock that is rich in organic material and is a target for non-conventional exploration, because it functions as a source and reservoir rock with a large shale volume and low permeability. Isopach maps can represent the thickness of shale layers and have the potential to become non-conventional exploration targets located in thick shale layers. Based on this background, this research will identify shale layers in the offshore fields of the North East Java Basin for non-conventional oil and gas exploration. The methods used are well logging and seismic methods. This research focuses on determining the location of shale layer depocenters based on isopach maps as a first step in localizing areas that will be targeted for the development of non-conventional hydrocarbon exploration. This research uses 29 2D seismic lines and 2 well data, namely NP-1 and NP-2 wells and the research target is the Kujung Formation and Ngimbang Formation in the offshore area of the North East Java Basin. The results obtained from the isopach map show that the depocenter location of the Kujung Formation is in the northwest direction with a shale thickness of 600-800 meters, while the Ngimbang Formation is in the east direction with a shale thickness of 1000-1300 meters. From the depocenter location, it can be seen that this location has a wealth of organic material so it has the potential to become a source rock and reservoir.

Keywords

non-conventional; shale; isopach map; depocenter; source rock

Full Text:

PDF

References

1 Katz, B., Gao, L., Little, J., & Zhao, Y. R. 2021. Geology still matters – Unconventional petroleum system disappointments and failures. Unconventional Resources, 1, 18-38.

2 Soliman, A. M., Abdelfattah, M. H., & Ahmed Yassin, M. H. 2015. Unconventional Reservoir: Definitions, Types and Egypt’s Potential. Technical Report, 1, 1-8.

3 Agustiyar, F. (2021). Indications of the Potential of Shale Gas for Non-Conventional Energy Sources in Indonesia. Tadulako Science and Technology Journal, 2(1), 17-25.

4 Hidayat, F. I., Yogi, A., Sabra, E., Ramli, T., Firdaus, M., Saleh, H. M., Arviallyn, G. G., & Wibowo, A. S. 2022. Source Rock Characterization of the Eocene-Miocene, Central Deep, North East Java Basin. Jurnal Geologi dan Sumberdaya Mineral, 23(3), 163-176.

5 Ahmed, U., & Meehan, D. N. 2016. Unconventional Oil and Gas Resources (pp. 1-894). Boca Raton.

6 Torres, G., Amparoa, L., Gomez, M., Diana, L., Barrios, R., Margarita, H., Bejaranob, A., Lemus, J., & Milena, T. 2019. Methodology to define hydrocarbon potential in a shale reservoir based on geochemical data and well logs. CT&F - Ciencia, Tecnología & Futuro, 9(1), 5-14.

7 Haris, A., Riyanto,, A., Seno, B., Almunawar, H. A., Marbun, M. B., Mahmudin, I., & Manaf, P. E. 2018. Unconventional Resources of Shale Hydrocarbon in Sumatra Basin, Indonesia (2nd ed., pp. 21-39). Shale Gas - New Aspects and Technologies.

8 Manaf, P. E., Suparno, Haris, A., Usman, A., & Riyanto, A. 2017. Organic Shale Analysis Using Geochemical Data and Seismic Attributes: Case Study of Talang Akar Formation, South Sumatera Basin [Conference Paper in AIP Conference Proceedings]. American Institute of Physics.

9 Putri, S. N., Hawan, S. I., Hapsoro, C. A., & Laksono, Y. A. 2024. Identification of shale gas existence based on 2-dimensional magnetotelluric data in the Kutai basin, East Kalimantan, Indonesia [Journal of Physics: Conference Series]. IOP Publishing.

10 Maulana, R. F., & Ranaputri, U. K. 2024. Potential Development of Unconventional Oil and Gas Resources in Indonesia: Key Challenges and Future Prospects. Indonesian Journal of Energy, 7(1), 27-42.

11 Wen, L. 2016. A Review on Shale Reservoirs as an Unconventional Play – The History, Technology Revolution, Importance to Oil and Gas Industry, and the Development Future. Acta Geologica Sinica, 90(5), 1887-1902.

12 Hanif, F., Haris, A., & Usman, A. 2018. Analysis of Shale Hydrocarbon Potential Based on Geochemical Data and Seismic Interpretation in Jambi Sub-Basin [AIP Conference Proceedings]. AIP Publishing.

13 Li, J., Jiang, C., Wang, M., Lu, S., Chen, Z., Chen, G., LI, J., & Lu, S. 2020. Adsorbed and free hydrocarbons in unconventional shale reservoir: A new insight from NMR T1-T2 maps. Marine and Petroleum Geology, 116, 13-28.

14 Dewanto, O., Wibowo, R. C., Darsono, & Eka Putri, A. C. 2023. The implementation of well logging method, geochemical analysis, and seismic method to determine source rock potentials at field “X”, Northeast Java Basin [Journal of Physics: Conference Series]. IOP Publishing.


15 Meilinda, A. 2023. Identifikasi Persebaran Ai, Densitas, Porositas Dan Sw Menggunakan Data Sumur Dan Seismik Pada Umur Oligosen Awal Hingga Miosen Akhir, Blok Madura Timur Laut, Cekungan Jawa Timur Utara (Publication No. 74368) [Skripsi Sarjana, Universitas Lampung]. 2301290962 . Digilib.

16 Julikah, Sriwidjaya, Jonathan, S., & Panuju 2015. Hydrocarbon Shale Potential In Talang Akar And Lahat Formations On South And Central Palembang Sub Basin. Scientific Contributions Oil And Gas, 38(3), 213-223.

17 Altamar, R. P., & Marfurt, K. 2014. Mineralogy-based brittleness prediction from surface seismic data: Application to the Barnett Shale. Interpretation, 2(4), SQ1-SQ17.

18 Khan, M. S., & Bibi, Z. 2016. Shale Gas Characterization of Sembar Formation, Khipro Area, Pakistan. International Journal of Geosciences, 7(8), 1009-1019.

19 Mulyatno, B. S., Dewanto, O., Sarkowi, M., & Suharso 2024. Identifikasi Jenis Fluida Pada Zona Target Hidrokarbon Berdasarkan Nilai Saturasi Air (Sw) di Lapangan Migas “BGS” Cekungan Jawa Timur Utara. Jurnal Geosains dan Remote Sensing (JGRS), 5(1), 69-79.

20 Sheriff, R. E., & Geldart, L. P. 1995. Exploration Seismology (2nd ed., pp. 1-260). Cambridge University Press.

21 Sukmono, S. 1999. Interpretasi Seismik Refleksi (1st ed., pp. 1-250). Bandung Institute of Technology (ITB).

22 Miao, X., & Moon, W. M. 1999. Application of wavelet transform in reflection seismic data analysis. Geosciences Journal, 3(3), 171-179.

23 Veeken, P. C., & Moerkerken, B. V. 2013. Seismic Stratigraphy and Depositional Facies Models (1st ed., pp. 1-496). EAGE.

24 Hübscher, C., & Gohl , K. 2014. Reflection/Refraction Seismology (1st ed., pp. 1-15). Springer, Dordrecht.

25 Munadi, S., & Pusaribu, D. P. 1987. Seismogram Sintetik dari Rekaman Geofisika Sumur. Lembaran Publikasi Minyak dan Gas Bumi (LPMGB), 21(3), 299-311.

26 Helmberger, D. V., & Burdick, L. J. 2003. Synthetic Seismograms. Annual Review of Earth and Planetary Sciences, 7(1), 417-442.

27 Bóna, A., & Slawinski, M. A. 2023. Fermat's principle for seismic rays in elastic media. Journal of Applied Geophysics, 54(3-4), 445-451.

28 Schuster, G. 2005. Fermat’s interferometric principle for multiple reflection tomography. Geophysical Research Letters, 32, 2-4.

29 Guo, Q., & Pennington, W. D. 2020. Polarity and phase in reflection seismic data: Stratton field. Interpretation, 8(3), 1-40.

30 Surachman, L. M., Abdulraheem, A., Al‑Shuhail, A., & Kaka, S. I. 2024. Acoustic impedance prediction based on extended seismic attributes using multilayer perceptron, random forest, and extra tree regressor algorithms. Journal of Petroleum Exploration and Production Technology, 1, 1-9.

31 Robinson, E. A., & Clark, D. 2006. Basic Seismology 13—Huygens' principle. The Leading Edge, 25(10), 1-20.

32 Tschannen, V., Ghanim, A., & Ettrich, N. 2022. Partial automation of the seismic to well tie with deep learning and Bayesian optimization. Computers & Geosciences, 164, 1-15.

33 Li, Y., Wong, Y., & Wu, N. 2021. Noise suppression method based on multi-scale Dilated Convolution Network in desert seismic data. Computers & Geosciences, 156, 104910.

34 Naeini, E. Z., Gunning, J., & White, R. 2017. Well tie for broadband seismic data. Geophysical Prospecting, 65(2), 503-522.

35 Yilmaz, O. 2001. Seismic Data Analysis (2nd ed., pp. 1-2065). Society of Exploration Geophysicists.

36 Epov, M., Suhorukova, C., Glinskikh, V., Nikitenko, M., Nechaev, O., & Surodina, I. 2013. Effective Electromagnetic Log Data Interpretation in Realistic Reservoir Models. Open Journal of Geology, 3(2B), 81-86.

37 Patidar, A. K., Singh, S., & Anand, S. 2023. Subsurface Lithology Classification Using Well Log Data, an Application of Supervised Machine Learning (1st ed., pp. 227-240). Machine Intelligence and Data Science Applications.


38 Elhossainy, M. M., Basal, A. K., ElBadrawy, H. T., Salam, S. A., & Sarhan, M. A. 2021. Well logging data interpretation for appraising the performance of Alam El‑Bueib reservoir in Safir Oil Field, Shushan Basin, Egypt. Journal of Petroleum Exploration and Production, 11, 2075-2089.

39 Abdelhafiz, M., Oppelt, J., Mahmoud, O., & Hegele Jr., L. A. 2023. Effect of drilling and wellbore geometry parameters on wellbore temperature profile: Implications for geothermal production. Advances In Geo-Energy Research, 8(3), 170-180.

40 Rider, M. H. 2002. The Geological Interpretation of Well Logs (2nd ed., pp. 1-280). Rider-French Consulting.

41 Pringgoprawiro, H. 1983. Cekungan Timur Utara Suatu Pendekatan Baru [Dissertation, Doctor, Bandung Institute of Technology (ITB)].

42 Husein, S. 2015. Petroleum and Regional Geology of Northeast Java Basin, Indonesia (1st ed., pp. 1-22). Universiti Teknologi Petronas - Malaysia.

43 Muther, T., Qureshi, H. A., Syed, F. I., Aziz, H., Siyal, A., Dahaghi, A. K., & Negahban, S. 2022. Unconventional hydrocarbon resources: Geological statistics, petrophysical characterization, and field development strategies. Journal of Petroleum Exploration and Production Technology, 12, 1463–1488.

44 Mondol, N. H., & Bjørlykke, K. 2010. Seismic Exploration (17th ed., pp. 375-402). Springer, Berlin, Heidelberg.

Refbacks

  • There are currently no refbacks.