Evaluation of Ferric Ion Adsorption On The Surface Imprinting Adsorbent
Abstract
Keywords
Full Text:
PDFReferences
Aktar, J. 2021. Batch adsorption process in water treatment. In Intelligent Environmental Data Monitoring for Pollution Management (pp. 1–24). Elsevier. https://doi.org/10.1016/B978-0-12-819671-7.00001-4. 2 Edianta, J., Satya, O. C., Virgo, F., Saleh, K., & Royani, I. 2023. Design of potentiometric instrumentation system based on Arduino nano microcontroller using imprinted polymer for the determination of Fe (III) metal ions. AIP Conference Proceedings, 2689(1), 1–7. https://doi.org/10.1063/5.0125919. 3 Kupai, J., Razali, M., Buyuktiryaki, S., Kecili, R., & Szekely, G. 2017. Long-term Stability and Reusability of Molecularly Imprinted Polymers. Polymer Chemistry, 8(4), 666–673. https://doi.org/10.1039/c6py01853j. 4 Bonilla-Petriciolet, A., Mendoza-Castillo, D. I., Piccin, J. S., Cadaval Jr., T. R. S., Pinto, L. A. A. de, Dotto, G. L., Salau, N. P. G., Dura ́n-Valle, C. J., Botet-Jimenez, A. B., Omenat-Moran, D., Xu, M., McKay, G., Rivera-Utrilla, J., Sanchez-Polo, M., Ocampo-Perez, R., Altimari, P., Caprio, F. D., Pagnanelli, F., Pouran, S. R., … Bayrami, A. 2017. Adsorption Processes for Water Treatment and Purification (H. E. Reynel-Ávila, Ed.; 1st ed.). Springer International Publishing. https://doi.org/10.1007/978-3-319-58136-1. 5 Musah, M., Azeh, Y., Mathew, J., Umar, M., Abdulhamid, Z., & Muhammad, A. 2022. Adsorption Kinetics and Isotherm Models: A Review. Caliphate Journal of Science and Technology, 4(1), 20–26. https://doi.org/10.4314/cajost.v4i1.3. 6 Raji, Z., Karim, A., Karam, A., & Khalloufi, S. 2023. Adsorption of Heavy Metals: Mechanisms, Kinetics, and Applications of Various Adsorbents in Wastewater Remediation—A Review. Waste, 1(3), 775–805. https://doi.org/10.3390/waste1030046. 7 Tran, H. D., & Nguyen, D. Q. 2023. Study on methylene blue adsorption using cashew nut shell-based activated carbon. Chimica Techno Acta, 10(4), 1–8. https://doi.org/10.15826/chimtech.2023.10.4.01. 8 Royani, I., Maimunah, M., Edianta, J., Alfikro, I., Monado, F., Jorena, J., Satya, O. C., & Virgo, F. 2024. Synthesis of Ion Imprinted Polymers (IIPs) Adsorbent Materials Using Fe(III) Leaching Process with Variation of Hydrochloric Acid Solvent Concentration and Heat Treatment. Science and Technology Indonesia, 9(2), 336–344. https://doi.org/10.26554/sti.2024.9.2.336-344. 9 Yang, P., Cao, H., Mai, D., Ye, T., Wu, X., Yuan, M., Yu, J., & Xu, F. 2020. A novel morphological ion imprinted polymers for selective solid phase extraction of Cd(II): Preparation, adsorption properties and binding mechanism to Cd(II). Reactive and Functional Polymers, 151, 104569. https://doi.org/10.1016/j.reactfunctpolym.2020.104569. 10 Cruz-Lopes, L. P., Macena, M., Esteves, B., & Guiné, R. P. F. 2021. Ideal pH for the adsorption of metal ions Cr6+, Ni2+, Pb2+ in aqueous solution with different adsorbent materials. Open Agriculture, 6(1), 115–123. https://doi.org/10.1515/opag-2021-0225. 11 Oumani, A., Mandi, L., Berrekhis, F., & Ouazzani, N. 2019. Removal of Cr3+ from tanning effluents by adsorption onto phosphate mine waste: Key parameters and mechanisms. Journal of Hazardous Materials, 378, 120718. https://doi.org/10.1016/j.jhazmat.2019.05.111. 12 Shi, M., Min, X., Ke, Y., Lin, Z., Yang, Z., Wang, S., Peng, N., Yan, X., Luo, S., Wu, J., & Wei, Y. 2021. Recent progress in understanding the mechanism of heavy metals retention by iron (oxyhydr)oxides. Science of The Total Environment, 752(141930), 1–19. https://doi.org/10.1016/j.scitotenv.2020.141930. 13 Darmawan, W., Nurani, D. A., Rahayu, D. U. C., & Abdullah, I. 2020. Synthesis of ion imprinted polymer for separation and preconcentration of iron(III). AIP Conference Proceedings, 2242(1), 040025. https://doi.org/10.1063/5.0008283. 14 Weller, M., Overton, T., Rourke, J., & Armstrong, F. 2014. Inorganic Chemistry (Sixth edition). Oxford University Press. 15 Khatri, N., Tyagi, S., & Rawtani, D. 2017. Recent strategies for the removal of iron from water: A review. Journal of Water Process Engineering, 19(5), 291–304. https://doi.org/10.1016/j.jwpe.2017.08.015. 16 Gulcin, İ., & Alwasel, S. H. 2022. Metal Ions, Metal Chelators and Metal Chelating Assay as Antioxidant Method. Processes, 10(1), 132. https://doi.org/10.3390/pr10010132. 17 Adams, P. C. 2015. Epidemiology and diagnostic testing for hemochromatosis and iron overload. International Journal of Laboratory Hematology, 37(S1), 25–30. https://doi.org/10.1111/ijlh.12347. 18 Giove, A., El Ouardi, Y., Sala, A., Ibrahim, F., Hietala, S., Sievänen, E., Branger, C., & Laatikainen, K. 2023. Highly selective recovery of Ni(II) in neutral and acidic media using a novel Ni(II)-ion imprinted polymer. Journal of Hazardous Materials, 444(130453), 1–10. https://doi.org/10.1016/j.jhazmat.2022.130453. 19 Novianty, N., Edianta, J., Jorena, J., Saleh, K., Bama, A. A., Koriyanti, E., Ariani, M., & Royani, I. 2023. Synthesis of Fe(III)-IIPs (Ion Imprinted Polymers): Comparing Different Concentrations of HCl and HNO3 Solutions in the Fe(III) Polymer Extraction Process for Obtaining the Largest Cavities in Fe(III)-IIPs. Science and Technology Indonesia, 8(3), 361–366. https://doi.org/10.26554/sti.2023.8.3.361-366. 20 Flynn, C., M. 1984. Hydrolysis of Inorganic Iron(III) Salts. Chemical Reviews, 84, 31–41. https://doi.org/10.1021/cr00059a003. 21 Scholz, M. 2006. Wetland systems to control urban runoff (1. ed). Elsevier. 22 Brown, T. L., LeMay, Jr., H. E., Bursten, B. E., Murphy, C. J., & Woodward, P. M. 2012. Chemistry: The Central Science (12th ed). Prentice Hall. 23 Weber, B. 2023. Coordination Chemistry: Basics and Current Trends. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-66441-4. 24 Sutherland, T. I., Sparks, C. J., Joseph, J. M., Wang, Z., Whitaker, G., Sham, T. K., & Wren, J. C. 2017. Effect of ferrous ion concentration on the kinetics of radiation-induced iron-oxide nanoparticle formation and growth. Physical Chemistry Chemical Physics, 19(1), 695–708. https://doi.org/10.1039/C6CP05456K. 25 Darweesh, M. A., Elgendy, M. Y., Ayad, M. I., Ahmed, A. M., Elsayed, N. M. K., & Hammad, W. A. 2022. Adsorption isotherm, kinetic, and optimization studies for copper(II) removal from aqueous solutions by banana leaves and derived activated carbon. South African Journal of Chemical Engineering, 40, 10–20. https://doi.org/10.1016/j.sajce.2022.01.002. 26 Roushani, M., Beygi, T. M., & Saedi, Z. 2016. Synthesis and application of ion-imprinted polymer for extraction and pre-concentration of iron ions in environmental water and food samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 153(1), 637–644. https://doi.org/10.1016/j.saa.2015.09.029. 27 Gore, P. M., Khurana, L., Siddique, S., Panicker, A., & Kandasubramanian, B. 2018. Ion-imprinted electrospun nanofibers of chitosan/1-butyl-3-methylimidazolium tetrafluoroborate for the dynamic expulsion of thorium(IV) ions from mimicked effluents. Environmental Science and Pollution Research, 25(4), 3320–3334. https://doi.org/10.1007/s11356-017-0618-6. 28 Kim, J., Kang, T., Kim, H., Shin, H. J., & Oh, S.-G. 2019. Preparation of PVA/PAA nanofibers containing thiol-modified silica particles by electrospinning as an eco-friendly Cu (II) adsorbent. Journal of Industrial and Engineering Chemistry, 77, 273–279. https://doi.org/10.1016/j.jiec.2019.04.048. 29 Rajhans, A., Gore, P. M., Siddique, S. K., & Kandasubramanian, B. 2019. Ion-imprinted nanofibers of PVDF/1-butyl-3-methylimidazolium tetrafluoroborate for dynamic recovery of Europium(III) ions from mimicked effluent. Journal of Environmental Chemical Engineering, 7(3), 1–12. https://doi.org/10.1016/j.jece.2019.103068. 30 Wirawan, T., Supriyanto, G., & Soegianto, A. 2019. Preparation of a New Cd(II)-Imprinted Polymer and Its Application to Preconcentration and Determination of Cd(II) Ion from Aqueous Solution by SPE-FAAS. Indonesian Journal of Chemistry, 19(1), 97. https://doi.org/10.22146/ijc.27703. 31 Chi, Z., Zhu, Y., Liu, W., Huang, H., & Li, H. 2021. Selective removal of As(III) using magnetic graphene oxide ion-imprinted polymer in porous media: Potential effect of external magnetic field. Journal of Environmental Chemical Engineering, 9(4), 1–10. https://doi.org/10.1016/j.jece.2021.105671. 32 Luu, T.-T., Dinh, V.-P., Nguyen, Q.-H., Tran, N.-Q., Nguyen, D.-K., Ho, T.-H., Nguyen, V.-D., Tran, D. X., & Kiet, H. A. T. 2022. Pb(II) adsorption mechanism and capability from aqueous solution using red mud modified by chitosan. Chemosphere, 287(132279), 1–8. https://doi.org/10.1016/j.chemosphere.2021.132279. 33 Indah, S., Helard, D., & Binuwara, A. 2018. Studies on desorption and regeneration of natural pumice for iron removal from aqueous solution. Water Science and Technology, 2017(2), 509–515. https://doi.org/10.2166/wst.2018.177. 34 Mishra, S. P. 2014. Adsorption–desorption of heavy metal ions. Current Science, 107(4), 601–612. 35 Kuśmierek, K., & Świątkowski, A. 2015. The influence of different agitation techniques on the adsorption kinetics of 4-chlorophenol on granular activated carbon. Reaction Kinetics, Mechanisms and Catalysis, 116(1), 261–271. https://doi.org/10.1007/s11144-015-0889-1. 36 Gomaa, H., Sayed, A., Mahross, M. H., Abdel-Hakim, M., Othman, I. M. M., Li, J., & El-Bahy, S. M. 2022. A hybrid spongy-like porous carbon-based on azopyrazole-benzenesulfonamide derivative for highly selective Fe3+-adsorption from real water samples. Microporous and Mesoporous Materials, 330, 1–13. https://doi.org/10.1016/j.micromeso.2021.111578. 37 Merck KGaA, M. 2024. Whatman® quantitative filter paper, ashless, Grade 42 [Specification]. Whatman® Quantitative Filter Paper, Ashless, Grade 42. https://www.sigmaaldrich.com/ID/en/product/aldrich/wha1442110#product-documentation. 38 Daochalermwong, A., Chanka, N., Songsrirote, K., Dittanet, P., Niamnuy, C., & Seubsai, A. 2020. Removal of Heavy Metal Ions Using Modified Celluloses Prepared from Pineapple Leaf Fiber. ACS Omega, 5(10), 5285–5296. https://doi.org/10.1021/acsomega.9b04326. 39 Engin, M. S., Uyanik, A., Cay, S., & Icbudak, H. 2010. Effect of the Adsorptive Character of Filter Papers on the Concentrations Determined in Studies Involving Heavy Metal Ions. Adsorption Science & Technology, 28(10), 837–846. https://doi.org/10.1260/0263-6174.28.10.837. 40 Saatçılar, Ö., Şatıroğlu, N., Say, R., Bektas̨, S., & Denizli, A. 2006. Binding behavior of Fe3+ ions on ion‐imprinted polymeric beads for analytical applications. Journal of Applied Polymer Science, 101(5), 3520–3528. https://doi.org/10.1002/app.24591. 41 Merck KGaA, M. 2024. Whatman® quantitative filter paper, ashless, Grade 41 [Specification]. Whatman® Quantitative Filter Paper, Ashless, Grade 41. https://www.sigmaaldrich.com/ID/en/product/aldrich/wha1441125. 42 He, W., Yu, Q., Wang, N., & Ouyang, X. 2020. Efficient adsorption of Cu(II) from aqueous solutions by acid-resistant and recyclable ethylenediamine tetraacetic acid-grafted polyvinyl alcohol/chitosan beads. Journal of Molecular Liquids, 316, 113856. https://doi.org/10.1016/j.molliq.2020.113856. 43 Praipipat, P., Ngamsurach, P., & Sanghuayprai, A. 2023. Modification of sugarcane bagasse with iron(III) oxide-hydroxide to improve its adsorption property for removing lead(II) ions. Scientific Reports, 13(1), 1467. https://doi.org/10.1038/s41598-023-28654-5. 44 Hande, P. E., Samui, A. B., & Kulkarni, P. S. 2015. Highly selective monitoring of metals by using ion-imprinted polymers. Environmental Science and Pollution Research, 22(10), 7375–7404. https://doi.org/10.1007/s11356-014-3937-x.
Refbacks
- There are currently no refbacks.