Evaluation of Ferric Ion Adsorption On The Surface Imprinting Adsorbent

Ihsan Alfikro, Jorena Jorena, Erry Koriyanti, Octavianus Cakra Satya, Fiber Monado, Idha Royani

Abstract

Rapidity in technological aspects encourages industrial sector to utilize and apply the latest technology to accelerate and optimize production in its field. Thus, waste from industry polluting various aspects of environment, such as water, gives rise to environmental impacts. Heavy metals, including iron, are one of the most common and dangerous pollutants often found in water environments. Therefore, consideration of methods for heavy metal separation from water becomes important. The adsorption method has been used for separating heavy metals because of its simplicity, thus effectively cuts energy consumption and costs in process. However, heavy metal characteristics in water can vary depending on the element. Consequently, understanding the heavy metal characteristics in water is important, hence capable of formulate appropriate and effective adsorption systems. This study, Fe(III)-IIPs was applied to adsorb and separate iron from water through repeated adsorption with parameter improvements. The pH parameter plays an important role, with ion competition happens at pH <2 and the formation of iron hydroxide species at pH >4.5, which results in adsorption inhibition. The modeling of adsorption kinetic equation was found that the adsorption system carries chemisorption characteristics, with adsorption capacity of 11.15 mg/g and reaction rate constant of 19 min-1.

Keywords

Adsorption, Evaluation, Chemisorption, Fe(III), Imprinted polymer

Full Text:

PDF

References

Aktar, J. 2021. Batch adsorption process in water treatment. In Intelligent Environmental Data Monitoring for Pollution Management (pp. 1–24). Elsevier. https://doi.org/10.1016/B978-0-12-819671-7.00001-4. 2 Edianta, J., Satya, O. C., Virgo, F., Saleh, K., & Royani, I. 2023. Design of potentiometric instrumentation system based on Arduino nano microcontroller using imprinted polymer for the determination of Fe (III) metal ions. AIP Conference Proceedings, 2689(1), 1–7. https://doi.org/10.1063/5.0125919. 3 Kupai, J., Razali, M., Buyuktiryaki, S., Kecili, R., & Szekely, G. 2017. Long-term Stability and Reusability of Molecularly Imprinted Polymers. Polymer Chemistry, 8(4), 666–673. https://doi.org/10.1039/c6py01853j. 4 Bonilla-Petriciolet, A., Mendoza-Castillo, D. I., Piccin, J. S., Cadaval Jr., T. R. S., Pinto, L. A. A. de, Dotto, G. L., Salau, N. P. G., Dura ́n-Valle, C. J., Botet-Jimenez, A. B., Omenat-Moran, D., Xu, M., McKay, G., Rivera-Utrilla, J., Sanchez-Polo, M., Ocampo-Perez, R., Altimari, P., Caprio, F. D., Pagnanelli, F., Pouran, S. R., … Bayrami, A. 2017. Adsorption Processes for Water Treatment and Purification (H. E. Reynel-Ávila, Ed.; 1st ed.). Springer International Publishing. https://doi.org/10.1007/978-3-319-58136-1. 5 Musah, M., Azeh, Y., Mathew, J., Umar, M., Abdulhamid, Z., & Muhammad, A. 2022. Adsorption Kinetics and Isotherm Models: A Review. Caliphate Journal of Science and Technology, 4(1), 20–26. https://doi.org/10.4314/cajost.v4i1.3. 6 Raji, Z., Karim, A., Karam, A., & Khalloufi, S. 2023. Adsorption of Heavy Metals: Mechanisms, Kinetics, and Applications of Various Adsorbents in Wastewater Remediation—A Review. Waste, 1(3), 775–805. https://doi.org/10.3390/waste1030046. 7 Tran, H. D., & Nguyen, D. Q. 2023. Study on methylene blue adsorption using cashew nut shell-based activated carbon. Chimica Techno Acta, 10(4), 1–8. https://doi.org/10.15826/chimtech.2023.10.4.01. 8 Royani, I., Maimunah, M., Edianta, J., Alfikro, I., Monado, F., Jorena, J., Satya, O. C., & Virgo, F. 2024. Synthesis of Ion Imprinted Polymers (IIPs) Adsorbent Materials Using Fe(III) Leaching Process with Variation of Hydrochloric Acid Solvent Concentration and Heat Treatment. Science and Technology Indonesia, 9(2), 336–344. https://doi.org/10.26554/sti.2024.9.2.336-344. 9 Yang, P., Cao, H., Mai, D., Ye, T., Wu, X., Yuan, M., Yu, J., & Xu, F. 2020. A novel morphological ion imprinted polymers for selective solid phase extraction of Cd(II): Preparation, adsorption properties and binding mechanism to Cd(II). Reactive and Functional Polymers, 151, 104569. https://doi.org/10.1016/j.reactfunctpolym.2020.104569. 10 Cruz-Lopes, L. P., Macena, M., Esteves, B., & Guiné, R. P. F. 2021. Ideal pH for the adsorption of metal ions Cr6+, Ni2+, Pb2+ in aqueous solution with different adsorbent materials. Open Agriculture, 6(1), 115–123. https://doi.org/10.1515/opag-2021-0225. 11 Oumani, A., Mandi, L., Berrekhis, F., & Ouazzani, N. 2019. Removal of Cr3+ from tanning effluents by adsorption onto phosphate mine waste: Key parameters and mechanisms. Journal of Hazardous Materials, 378, 120718. https://doi.org/10.1016/j.jhazmat.2019.05.111. 12 Shi, M., Min, X., Ke, Y., Lin, Z., Yang, Z., Wang, S., Peng, N., Yan, X., Luo, S., Wu, J., & Wei, Y. 2021. Recent progress in understanding the mechanism of heavy metals retention by iron (oxyhydr)oxides. Science of The Total Environment, 752(141930), 1–19. https://doi.org/10.1016/j.scitotenv.2020.141930. 13 Darmawan, W., Nurani, D. A., Rahayu, D. U. C., & Abdullah, I. 2020. Synthesis of ion imprinted polymer for separation and preconcentration of iron(III). AIP Conference Proceedings, 2242(1), 040025. https://doi.org/10.1063/5.0008283. 14 Weller, M., Overton, T., Rourke, J., & Armstrong, F. 2014. Inorganic Chemistry (Sixth edition). Oxford University Press. 15 Khatri, N., Tyagi, S., & Rawtani, D. 2017. Recent strategies for the removal of iron from water: A review. Journal of Water Process Engineering, 19(5), 291–304. https://doi.org/10.1016/j.jwpe.2017.08.015. 16 Gulcin, İ., & Alwasel, S. H. 2022. Metal Ions, Metal Chelators and Metal Chelating Assay as Antioxidant Method. Processes, 10(1), 132. https://doi.org/10.3390/pr10010132. 17 Adams, P. C. 2015. Epidemiology and diagnostic testing for hemochromatosis and iron overload. International Journal of Laboratory Hematology, 37(S1), 25–30. https://doi.org/10.1111/ijlh.12347. 18 Giove, A., El Ouardi, Y., Sala, A., Ibrahim, F., Hietala, S., Sievänen, E., Branger, C., & Laatikainen, K. 2023. Highly selective recovery of Ni(II) in neutral and acidic media using a novel Ni(II)-ion imprinted polymer. Journal of Hazardous Materials, 444(130453), 1–10. https://doi.org/10.1016/j.jhazmat.2022.130453. 19 Novianty, N., Edianta, J., Jorena, J., Saleh, K., Bama, A. A., Koriyanti, E., Ariani, M., & Royani, I. 2023. Synthesis of Fe(III)-IIPs (Ion Imprinted Polymers): Comparing Different Concentrations of HCl and HNO3 Solutions in the Fe(III) Polymer Extraction Process for Obtaining the Largest Cavities in Fe(III)-IIPs. Science and Technology Indonesia, 8(3), 361–366. https://doi.org/10.26554/sti.2023.8.3.361-366. 20 Flynn, C., M. 1984. Hydrolysis of Inorganic Iron(III) Salts. Chemical Reviews, 84, 31–41. https://doi.org/10.1021/cr00059a003. 21 Scholz, M. 2006. Wetland systems to control urban runoff (1. ed). Elsevier. 22 Brown, T. L., LeMay, Jr., H. E., Bursten, B. E., Murphy, C. J., & Woodward, P. M. 2012. Chemistry: The Central Science (12th ed). Prentice Hall. 23 Weber, B. 2023. Coordination Chemistry: Basics and Current Trends. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-66441-4. 24 Sutherland, T. I., Sparks, C. J., Joseph, J. M., Wang, Z., Whitaker, G., Sham, T. K., & Wren, J. C. 2017. Effect of ferrous ion concentration on the kinetics of radiation-induced iron-oxide nanoparticle formation and growth. Physical Chemistry Chemical Physics, 19(1), 695–708. https://doi.org/10.1039/C6CP05456K. 25 Darweesh, M. A., Elgendy, M. Y., Ayad, M. I., Ahmed, A. M., Elsayed, N. M. K., & Hammad, W. A. 2022. Adsorption isotherm, kinetic, and optimization studies for copper(II) removal from aqueous solutions by banana leaves and derived activated carbon. South African Journal of Chemical Engineering, 40, 10–20. https://doi.org/10.1016/j.sajce.2022.01.002. 26 Roushani, M., Beygi, T. M., & Saedi, Z. 2016. Synthesis and application of ion-imprinted polymer for extraction and pre-concentration of iron ions in environmental water and food samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 153(1), 637–644. https://doi.org/10.1016/j.saa.2015.09.029. 27 Gore, P. M., Khurana, L., Siddique, S., Panicker, A., & Kandasubramanian, B. 2018. Ion-imprinted electrospun nanofibers of chitosan/1-butyl-3-methylimidazolium tetrafluoroborate for the dynamic expulsion of thorium(IV) ions from mimicked effluents. Environmental Science and Pollution Research, 25(4), 3320–3334. https://doi.org/10.1007/s11356-017-0618-6. 28 Kim, J., Kang, T., Kim, H., Shin, H. J., & Oh, S.-G. 2019. Preparation of PVA/PAA nanofibers containing thiol-modified silica particles by electrospinning as an eco-friendly Cu (II) adsorbent. Journal of Industrial and Engineering Chemistry, 77, 273–279. https://doi.org/10.1016/j.jiec.2019.04.048. 29 Rajhans, A., Gore, P. M., Siddique, S. K., & Kandasubramanian, B. 2019. Ion-imprinted nanofibers of PVDF/1-butyl-3-methylimidazolium tetrafluoroborate for dynamic recovery of Europium(III) ions from mimicked effluent. Journal of Environmental Chemical Engineering, 7(3), 1–12. https://doi.org/10.1016/j.jece.2019.103068. 30 Wirawan, T., Supriyanto, G., & Soegianto, A. 2019. Preparation of a New Cd(II)-Imprinted Polymer and Its Application to Preconcentration and Determination of Cd(II) Ion from Aqueous Solution by SPE-FAAS. Indonesian Journal of Chemistry, 19(1), 97. https://doi.org/10.22146/ijc.27703. 31 Chi, Z., Zhu, Y., Liu, W., Huang, H., & Li, H. 2021. Selective removal of As(III) using magnetic graphene oxide ion-imprinted polymer in porous media: Potential effect of external magnetic field. Journal of Environmental Chemical Engineering, 9(4), 1–10. https://doi.org/10.1016/j.jece.2021.105671. 32 Luu, T.-T., Dinh, V.-P., Nguyen, Q.-H., Tran, N.-Q., Nguyen, D.-K., Ho, T.-H., Nguyen, V.-D., Tran, D. X., & Kiet, H. A. T. 2022. Pb(II) adsorption mechanism and capability from aqueous solution using red mud modified by chitosan. Chemosphere, 287(132279), 1–8. https://doi.org/10.1016/j.chemosphere.2021.132279. 33 Indah, S., Helard, D., & Binuwara, A. 2018. Studies on desorption and regeneration of natural pumice for iron removal from aqueous solution. Water Science and Technology, 2017(2), 509–515. https://doi.org/10.2166/wst.2018.177. 34 Mishra, S. P. 2014. Adsorption–desorption of heavy metal ions. Current Science, 107(4), 601–612. 35 Kuśmierek, K., & Świątkowski, A. 2015. The influence of different agitation techniques on the adsorption kinetics of 4-chlorophenol on granular activated carbon. Reaction Kinetics, Mechanisms and Catalysis, 116(1), 261–271. https://doi.org/10.1007/s11144-015-0889-1. 36 Gomaa, H., Sayed, A., Mahross, M. H., Abdel-Hakim, M., Othman, I. M. M., Li, J., & El-Bahy, S. M. 2022. A hybrid spongy-like porous carbon-based on azopyrazole-benzenesulfonamide derivative for highly selective Fe3+-adsorption from real water samples. Microporous and Mesoporous Materials, 330, 1–13. https://doi.org/10.1016/j.micromeso.2021.111578. 37 Merck KGaA, M. 2024. Whatman® quantitative filter paper, ashless, Grade 42 [Specification]. Whatman® Quantitative Filter Paper, Ashless, Grade 42. https://www.sigmaaldrich.com/ID/en/product/aldrich/wha1442110#product-documentation. 38 Daochalermwong, A., Chanka, N., Songsrirote, K., Dittanet, P., Niamnuy, C., & Seubsai, A. 2020. Removal of Heavy Metal Ions Using Modified Celluloses Prepared from Pineapple Leaf Fiber. ACS Omega, 5(10), 5285–5296. https://doi.org/10.1021/acsomega.9b04326. 39 Engin, M. S., Uyanik, A., Cay, S., & Icbudak, H. 2010. Effect of the Adsorptive Character of Filter Papers on the Concentrations Determined in Studies Involving Heavy Metal Ions. Adsorption Science & Technology, 28(10), 837–846. https://doi.org/10.1260/0263-6174.28.10.837. 40 Saatçılar, Ö., Şatıroğlu, N., Say, R., Bektas̨, S., & Denizli, A. 2006. Binding behavior of Fe3+ ions on ion‐imprinted polymeric beads for analytical applications. Journal of Applied Polymer Science, 101(5), 3520–3528. https://doi.org/10.1002/app.24591. 41 Merck KGaA, M. 2024. Whatman® quantitative filter paper, ashless, Grade 41 [Specification]. Whatman® Quantitative Filter Paper, Ashless, Grade 41. https://www.sigmaaldrich.com/ID/en/product/aldrich/wha1441125. 42 He, W., Yu, Q., Wang, N., & Ouyang, X. 2020. Efficient adsorption of Cu(II) from aqueous solutions by acid-resistant and recyclable ethylenediamine tetraacetic acid-grafted polyvinyl alcohol/chitosan beads. Journal of Molecular Liquids, 316, 113856. https://doi.org/10.1016/j.molliq.2020.113856. 43 Praipipat, P., Ngamsurach, P., & Sanghuayprai, A. 2023. Modification of sugarcane bagasse with iron(III) oxide-hydroxide to improve its adsorption property for removing lead(II) ions. Scientific Reports, 13(1), 1467. https://doi.org/10.1038/s41598-023-28654-5. 44 Hande, P. E., Samui, A. B., & Kulkarni, P. S. 2015. Highly selective monitoring of metals by using ion-imprinted polymers. Environmental Science and Pollution Research, 22(10), 7375–7404. https://doi.org/10.1007/s11356-014-3937-x.

Refbacks

  • There are currently no refbacks.