Using Decision Tree With First and Second-Order Statistical Feature Extraction for Classification of Lung Cancer
Abstract
The classification of CT-Scan images on images with lung cancer and normal lung has been done by improving the image quality of the median and Gabor filters, extraction of first and second-order statistical features, and decision tree classification. The data used comes from LIDC-IDRI as much as 100 training data and 40 test data. The median filter removes noise without removing edges in the image. A Gabor filter is used to facilitate texture analysis on the image. At the feature extraction stage, statistical variations of the first order, second order statistics and the merging of first and second-order statistics. The best results obtained at the testing stage are program designs with variations of feature extraction combining first and second-order statistics. The level of accuracy obtained is 97.5%, with a sensitivity of 100% and a specificity of 95%.
Keywords
Full Text:
PDFReferences
W. Health Organization, WHO top 10 causes of death, one pager. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death, 2020 [2] R. Paul, S. H. Hawkins, L. O. Hall, D. B. Goldgof & R. J. Gillies. "Combining Deep Neural Network and Traditional Image Features to Improve Survival Prediction Accuracy for Lung Cancer Patients from Diagnostic CT". 2016 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2016 - Conference Proceedings, pp. 2570–2575, 2017 [3] S. B. Shaker, A. Dirksen, K. S. Bach & J. Mortensen. "Imaging in chronic obstructive pulmonary disease". COPD: Journal of Chronic Obstructive Pulmonary Disease, Vol. 4 No. 2,pp 143–161, 2007 [4] S. Sukatmi. "Perbandingan Deteksi Tepi Citra Digital dengan Menggunakan Metode Prewitt, Sobel dan Canny". KOPERTIP : Jurnal Ilmiah Manajemen Informatika Dan Komputer, Vol 1 No. 1, pp 1–4, 2017 [5] S. Sathiya, G. Priyanka, & S. Jeyanthi. "Detection of Chronic Obstructive Pulmonary Disease in Computer with CNN Classification". International Journal of Pure and Applied Mathematics, Vol 119 No. 12, pp 13815–13821, 2018 [6] N. Wakhidah."Perbaikan Kualitas Citra Menggunakan Metode Contrast Stretching". Jurnal Transformatika, Vol 8 No 2, pp. 78–83, 2011 [7] T. Aggarwal, A. Furqan, & K. Kalra. "Feature Extraction and LDA based Classification of Lung Nodules in chest CT Scan Images". in 2015 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2015, pp. 1189–1193, 2015 [8] M. Yunianto., S. Soeparmi, C. Cari, F. Anwar, D. N. Septianingsih,T. D. Ardyanto & R. F. Pradana. "Klasifikasi Kanker Paru Paru menggunakan Naïve Bayes dengan Variasi Filter dan Ekstraksi Ciri GLCM". Indonesian Journal of Applied Physics, Vol 11 No 2, pp. 256, 2021 [9] A. Kulkarni & A. Panditrao." Classification of Lung Cancer Stages on CT Scan Images Using Image Processing". in Proceedings of 2014 IEEE International Conference on Advanced Communication, Control and Computing Technologies, ICACCCT 2014, 978, pp. 1384–1388, 2015 [10] A. Chaudhary & S. S. Singh."Lung Cancer Detection on CT Images by Using Image Processing". in Proceedings: Turing 100 - International Conference on Computing Sciences, ICCS, pp 142–146, 2012 [11] R. Radi, M. Rivai & M. H. Purnomo. "Combination of First and Second Order Statistical Features of Bulk Grain Image for Quality Grade Estimation of Green Coffee Bean". ARPN Journal of Engineering and Applied Sciences, Vol. 10 No. 18, pp. 8165–8174. 2015 [12] G. A. Shanbhag, K. A.Prabhu, N. V. S.Reddy & B. A. Rao."Prediction of Lung Cancer using Ensemble Classifiers". Journal of Physics: Conference Series, Vol. 2161 No. 1, 012007., 2022 [13] H. Sharma, & S. Kumar. "A Survey on Decision Tree Algorithms of Classification in Data Mining". International Journal of Science and Research (IJSR), Vol 5 No 4, pp. 2094–2097, 2016 [14] D. Jayaraj, & S. Sathiamoorthy. "Random Forest based Classification Model for Lung Cancer Prediction on Computer Tomography Images". Proceedings of the 2nd International Conference on Smart Systems and Inventive Technology, ICSSIT 2019, Icssit, pp. 100–104, 2019 [15] M. R.Hasan & M. Al.Kabir. "Lung Cancer Detection and Classification based on Image Processing and Statistical Learning". http://arxiv.org/abs/1911.10654, 2019 [16] H. F. Kareem, M. S. AL-Husieny, F. Y. Mohsen, E. A. Khalil, & Z. S. Hassan." Evaluation of SVM Performance in The Detection of Lung Cancer in Marked CT Scan Dataset". Indonesian Journal of Electrical Engineering and Computer Science, Vol 21 No. 3, pp. 1731–1738, 2021 [17] P. Lobo, & S. Guruprasad. "Classification and Segmentation Techniques for Detection of Lung Cancer from CT Images". in Proceedings of the International Conference on Inventive Research in Computing Applications, ICIRCA 2018, Icirca, pp. 1014–1019, 2018 [18] T. S. Roy, N. Sirohi & A. Patle. "Classification of Lung Image and Nodule Detection using Fuzzy Inference System". International Conference on Computing, Communication and Automation, ICCCA 2015, pp. 1204–1207, 2015 [19] Ö. Günaydin, M. Günay & Ö. Şengel. "Comparison of Lung Cancer Detection Algorithms". 2019 Scientific Meeting on Electrical-Electronics and Biomedical Engineering and Computer Science, EBBT 2019, 2019 [20] S. R. A. Ahmed, I. Al-Barazanchi, A. Mhana, & H. R. Abdulshaheed. "Lung Cancer Classification using Data Mining and Supervised Learning Algorithms on Multi-dimensional Data Set". Periodicals of Engineering and Natural Sciences, Vol 7 No. 2, pp. 438–447, 2019 [21] S. Mondal, A. K. Sadhu & P. K. Dutta. "Automated diagnosis of pulmonary emphysema using multi-objective binary thresholding and hybrid classification". Biomedical Signal Processing and Control, 69., 2021 [22] N. Banerjee & S. Das. "Prediction Lung Cancer- in Machine Learning Perspective". in 2020 International Conference on Computer Science, Engineering and Applications, ICCSEA 2020, 2020 [23] K. Balasamy & D. Shamia. "Feature Extraction-based Medical Image Watermarking Using Fuzzy-based Median Filter". IETE Journal of Research, 1–9, 2021 [24] P. Bhuvaneswari & A. B. Therese. "Detection of Cancer in Lung with K-NN Classification Using Genetic Algorithm". Procedia Materials Science, 10(Cnt 2014),pp. 433–440, 2015 [25] S.Chhillar, G. Singh, A. Singh & V. K Saini. "Quantitative Analysis of Pulmonary Emphysema by Congregating Statistical Features". in 2019 3rd International Conference on Recent Developments in Control, Automation and Power Engineering, RDCAPE 2019, Cl, pp.329–333, 2019 [26] M. R. Ismael & I. Abdel-Qader. "Brain Tumor Classification via Statistical Features and Back-Propagation Neural Network". IEEE International Conference on Electro Information Technology, 2018,pp. 252–257, 2018 [27] R. A. Rizal, S. Gulo, O. D. C. Sihombing, A. B. M. Napitupulu, A. Y. Gultom & T. J. Siagian. "Analisis Gray level Co-occurrence Matrix (GLCM) Dalam Mengenali Citra Ekspresi Wajah". Jurnal Mantik, Vol. 3 No. 2,pp. 31–38, 2019 [28] R. M. Haralick, K. Shanmugam & I. Dinstein. "Textural Features for Image Classification". IEEE Transactions on Systems, Man, and Cybernetics, SMC- Vol 3 No. 6, pp. 610–621., 1973 [29] P. R. Radhika, R. A. S. Nair & G. Veena. "A Comparative Study of Lung Cancer Detection using Machine Learning Algorithms". Proceedings of 2019 3rd IEEE International Conference on Electrical, Computer and Communication Technologies, ICECCT 2019, 1–4, 2019 [30] B. R. Patel & K. K. Rana. "A Survey on Decision Tree Algorithm For Classification". Ijedr, Vol 2 No 1, pp. 1–5, 2014 [31] J. R. Quinlan. "Improved Use of Continuous Attributes in C4.5". Journal of Artificial Inteligence Research, Vol 4, pp. 77–90, 1996 [32] F. Shaukat, G. Raja, R. Ashraf, S. Khalid, M. Ahmad & A. Ali."Artificial neural network based classification of lung nodules in CT images using intensity, shape and texture features". Journal of Ambient Intelligence and Humanized Computing, Vol 10 No 10, pp. 4135–4149, 2019 [33] A. Luque, A. Carrasco, A. Martín, & A. de las Heras. "The Impact of Class Imbalance in Classification Performance Metrics based on the Binary Confusion Matrix". Pattern Recognition, 91,pp. 216–231, 2019 [34] S. S. Sumijan, A. W. Purnama & S. Arlis. "Peningkatan Kualitas Citra CT-Scan dengan Penggabungan Metode Filter Gaussian dan Filter Median". Jurnal Teknologi Informasi Dan Ilmu Komputer, Vol 6 No 6, pp. 591, 2019 [35] Y. Xu, Y. Wang & N. Razmjooy. "Lung cancer diagnosis in CT images based on Alexnet optimized by modified Bowerbird optimization algorithm". Biomedical Signal Processing and Control, 77(May), 103791, 2022 [36] E. Lussiana, S. Widodo & D. A. Pambayun. "Penerapan Filter Gabor Untuk Analisis G-44 G-45". in Seminar Nasional Apliksai Teknologi Informasi, 2011(Snati),pp. 17–18, 2011
Refbacks
- There are currently no refbacks.