Using FTIR Analysis to Investigate the Mineralogical Composition of Ultisolsa Alfisol in Southeast East Sulawesi, Indonesia

Rosliana Eso, Tufaila Tufaila, Arman Arman

Abstract

This study aims to investigate the mineralogical composition of Ultisols and Alfisols using the X-ray diffraction (XRD) analytical technique and FTIR analysis to provide fundamental information on these soil types. Thirty samples of Ultisols and Alfisols were collected from six selected sites with different profiles (i.e., Profile 1, Profile 2, and Profile 3) where these soils occur on limestone parent material. We used the Kjeldahl method to determine total nitrogen, a soil pH meter to measure pH, and the X-ray fluorescence (XRF) method to analyze chemical elements. Additionally, XRD in conjunction with FTIR spectroscopy was used to examine the mineralogical composition of both soil types.The average total nitrogen content across all profiles ranged from 0.1% to 0.35% for Ultisols and from 0.1% to 0.92% for Alfisols. The soil pH indicated an alkaline reaction, ranging from 4.5 to 5.3 for Ultisols and from 4.8 to 6.2 for Alfisols.  Chemical element content obtained from oxides in all profiles included Si, Al, Fe, Mg, Ti, Ca, S, Na, K, P, Mn, Ni, Co, and Cr. Dominant Si trends, consistently increasing upward on both Ultisol and Alfisol sites, indicated significant soil development in the study area. The diffraction pattern graphics of topsoil from all profiles identified a 100% Silicon oxide quartz low (SiO2) phase with the trigonal (hexagonal axes) crystal system.  FTIR spectroscopy analysis showed progressive kaolinization in all Alfisol samples. In contrast, Ultisol Profile 1 expressed montmorillonite, while Profiles 2 and 3 attributed to kaolinite. FTIR results consistently 

Keywords

Ultisol; Alfisol; FTIR Analysis; XRD Analysis; Mineral.

Full Text:

PDF

References

1 Nieto, J. L. 1978. Infrared determination of quartz, Kaolin, corundum, silicon carbide and orthoclase in respirable dust from grinding wheels. Analyst, 103(1223), 128-133.

2 Craddock, P. R., Herron, M. M., & Herron, S. L. 2017. Comparison of quantitative mineral analysis by X-ray diffraction and Fourier transform infrared spectroscopy. Journal of Sedimentary Research, 87(6), 630-652.

3 Chukanov, N. V., & Chervonnyi, A. D. 2016. Infrared spectroscopy of minerals and related compounds. Springer.

4 Sánchez-Sánchez, A., Cerdán, M., Jordá, J. D., Amat, B., & Cortina, J. 2019. Characterization of soil mineralogy by FTIR: Application to the analysis of mineralogical changes in soils affected by vegetation patches. Plant and Soil, 439, 447-458.

5 Zornoza, R., Guerrero, C., Mataix-Solera, J., Scow, K. M., Arcenegui, V., & Mataix-Beneyto, J. 2008. Near infrared spectroscopy for determination of various physical, chemical and biochemical properties in Mediterranean soils. Soil Biology and Biochemistry, 40(7), 1923-1930.

6 Parikh, S. J., Goyne, K. W., Margenot, A. J., Mukome, F. N., & Calderón, F. J. 2014. Soil chemical insights provided through vibrational spectroscopy. Advances in agronomy, 126, 1-148.

7 Parikh, S. J., Goyne, K. W., Margenot, A. J., Mukome, F. N., & Calderón, F. J. 2014. Soil chemical insights provided through vibrational spectroscopy. Advances in agronomy, 126, 1-148.

8 Tkachenko, Y., & Niedzielski, P. 2022. FTIR as a method for qualitative assessment of solid samples in geochemical research: a review. Molecules, 27(24), 8846.

9 Robertson, A. J., Hill, H. R., & Main, A. M. 2013. Analysis of Soil in the Field using portable FTIR. In International Workshop on Soil Spectroscopy: The Present and Future of Soil Monitoring.

10 Šimon, T. 2007. Characterisation of soil organic matter in long-term fallow experiment with respect to the soil hydrophobicity and wettability.

11 Haberhauer, G., Feigl, B., Gerzabek, M. H., & Cerri, C. 2000. FT-IR spectroscopy of organic matter in tropical soils: changes induced through deforestation. Applied Spectroscopy, 54(2), 221-224.

12 Ojima, J. 2003. Determining of crystalline silica in respirable dust samples by infrared spectrophotometry in the presence of interferences. Journal of Occupational Health, 45(2), 94-103.

13 Margenot, A. J., Calderón, F. J., Goyne, K. W., Dmukome, F. N., & Parikh, S. J. 2016. IR spectroscopy, soil analysis applications. In Encyclopedia of spectroscopy and spectrometry (pp. 448-454). Elsevier.

14 Madari, B. E., Reeves III, J. B., Machado, P. L., Guimarães, C. M., Torres, E., & McCarty, G. W. 2006. Mid-and near-infrared spectroscopic assessment of soil compositional parameters and structural indices in two Ferralsols. Geoderma, 136(1-2), 245-259.

15 Saaltink, R., Griffioen, J., Mol, G., Birke, M., & GEMAS Project Team. 2014. Geogenic and agricultural controls on the geochemical composition of European agricultural soils. Journal of Soils and Sediments, 14, 121-137.

16 Reeves, J. B., McCarty, G. W., & Reeves, V. B. 2001. Mid-infrared diffuse reflectance spectroscopy for the quantitative analysis of agricultural soils. Journal of agricultural and food chemistry, 49(2), 766-772.

17 Margenot, A. J., Calderón, F. J., Bowles, T. M., Parikh, S. J., & Jackson, L. E. 2015. Soil organic matter functional group composition in relation to organic carbon, nitrogen, and phosphorus fractions in organically managed tomato fields. Soil Science Society of America Journal, 79(3), 772-782.

18 Achat, D. L., Pousse, N., Nicolas, M., Brédoire, F., & Augusto, L. 2016. Soil properties controlling inorganic phosphorus availability: general results from a national forest network and a global compilation of the literature. Biogeochemistry, 127, 255-272.


19 Towett, E. K., Shepherd, K. D., Sila, A., Aynekulu, E., & Cadisch, G. 2015. Mid‐infrared and total x‐ray fluorescence spectroscopy complementarity for assessment of soil properties. Soil Science Society of America Journal, 79(5), 1375-1385.

20 Cannane, N. O. A., Rajendran, M., & Selvaraju, R. 2014. Mineralogical identification on polluted soils using XRD method. J Environ Nanotechnol, 3, 23-29.

21 Willms, M., Drake, R., Leftwich, K., DeLuca, D., & Jasra, S. K. 2017. X-Ray diffraction comparison of Windsor area soil mineralogy for forensic investigations. Journal of Emerging Forensic Sciences Research, 2(1), 65-74.

22 Zhang, Z., Sheng, Q., Zhao, M., Zhong, J., He, N., Li, R., ... & Zhang, J. 2021. Analysis of soil clay mineral in terrestrial ecosystem using X-ray diffraction spectroscopy. Spectroscopy Letters, 54(1), 65-71.

23 Rocha, D. R., Barber, X., Jordán-Vidal, M. M., Urbano, A., Melquiades, F. L., Thomaz, E. L., & Mataix-Solera, J. 2022. Multivariate Analysis with XRD Data as a Fingerprinting Technique to Study Burned Soils. Minerals, 12(11), 1402.

24 Jordá, J. D., Jordán, M. M., Ibanco-Cañete, R., Montero, M. A., Reyes-Labarta, J. A., Sánchez, A., & Cerdán, M. 2015. Mineralogical analysis of ceramic tiles by FTIR: A quantitative attempt. Applied Clay Science, 115, 1-8.

25 Xu Z., Cornilsen B.C., Popko D.C., Wei B., Pennington W.D., Wood J.R. 2001. Quantitative Mineral Analysis by FTIR Spectroscopy. Internet J. Vib. Spectrosc, 5, 1–11. Online: www.ijvs.com

26 Linker, R., Weiner, M., Shmulevich, I., & Shaviv, A. 2006. Nitrate determination in soil pastes using attenuated total reflectance mid-infrared spectroscopy: Improved accuracy via soil identification. Biosystems Engineering, 94(1), 111-118.

27 Krivoshein, P. K., Volkov, D. S., Rogova, O. B., & Proskurnin, M. A. 2020. FTIR photoacoustic spectroscopy for identification and assessment of soil components: Chernozems and their size fractions. Photoacoustics, 18, 100162.

28 Du, C., Zhou, J., Wang, H., Chen, X., Zhu, A., & Zhang, J. 2009. Determination of soil properties using Fourier transform mid-infrared photoacoustic spectroscopy. Vibrational Spectroscopy, 49(1), 32-37.

29 Ananthapadmanabha, A. L., Shankar, R., & Sandeep, K. 2014. Rock magnetic properties of lateritic soil profiles from southern India: Evidence for pedogenic processes. Journal of Applied Geophysics, 111, 203-210.

30 Osanai, Y., Knox, O., Nachimuthu, G., & Wilson, B. 2020. Contrasting agricultural management effects on soil organic carbon dynamics between topsoil and subsoil. Soil Research, 59(1), 24-33.

31 Cantarella, H., Quaggio, J. A., van Raij, B., & de Abreu, M. F. 2006. Variability of soil analysis in commercial laboratories: implications for lime and fertilizer recommendations. Communications in Soil Science and Plant Analysis, 37(15-20), 2213-2225.

32 Fiantis, D. 2017. Morfology dan Klasifikasi Tanah. Universitas Andalas.

Refbacks

  • There are currently no refbacks.