Efficiency And Effectiveness Of Circuit Arrangement And Placement Of Thermoelectric For The Design Of Utilizing Zinc Roof As An Electrical Source
Abstract
The problem related to electrical power sources commonly encountered in society is the frequent occurrence of rotating power outages or sudden blackouts, which disrupt activities for both communities and industries as they heavily rely on electrical power to meet their needs, both collectively and individually. In order to meet the needs of society and industry, Indonesia requires a sufficiently large energy supply. One renewable energy source that can be utilized is solar energy due to its easy availability, cleanliness, and cost-effectiveness. In this study, an experimental method is employed, which utilizes the heat from zinc roofs and converts it into electrical energy using thermoelectric generators. Testing is conducted by varying the circuit arrangements, including series, parallel, and combined configurations, as well as the number of thermoelectric modules (20, 30, and 42 modules), and placement locations on zinc roofs and house ceilings, to observe the output results in terms of voltage and electrical current. As observed from the test results presented in the graphs, the output voltage and current vary for each type of circuit. Based on the use of various circuit arrangements, it can be concluded that combining thermoelectric generators results in higher current and voltage values. The greater the number of thermoelectric modules, the larger the output value. There is a difference in output values between placement on zinc roofs and ceilings, with higher output values observed when installed on zinc roofs. This is due to direct contact between the hot side of the thermoelectric generator and the inner part of the zinc roof. All data obtained from these variations depend on the temperature difference between the hot and cold sides of the thermoelectric generator. The greater the temperature difference produced, the larger the voltage and current output from the circuit. This temperature difference affects the overall performance of the circuit.
Keywords
Full Text:
PDFReferences
K., P., & Wango, S. (2016). Smart Power Generation from Waste Heat By Thermo Electric Generator. International Journal of Mechanical And Production Engineering, 2320–2092.
Agung, A. I. (2013). Potensi Sumber Energi Alternatif dalam Mendukung Kelistrikan Nasional. Jurnal Pendidikan Teknik Elektro, 2(2), 892–897.
Januardi, O., Hiendro, A., & Syaifurrahman. (2020). Pengaruh Reflektor pada Pembangkit Listrik Termoelektrik menggunakan Energi Panas Matahari.
Sumarjo, J., Santosa, A., & Permana, M. I. (2017). Pemanfaatan Sumber Panas pada Kompor Menggunakan 10 Termoelektrik Generator Dirangkai secara Seri untuk Aplikasi Lampu Penerangan. Jurnal Mesin Teknologi (SINTEK Jurnal), 11(2), 123–128. jurnal.umj.ac.id/index.php?journal=sintek
Junior, O. H. A., Calderon, N. H., & Silva De Souza, S. (2018). Characterization of a thermoelectric generator (TEG) system for waste heat recovery. Energies, 11(6). https://doi.org/10.3390/en11061555
Jaziri, N., Boughamoura, A., Müller, J., Mezghani, B., Tounsi, F., & Ismail, M. (2020). A comprehensive Review of Thermoelectric Generators: Technologies and Common Applications. Energy Reports, 6, 264–287. https://doi.org/10.1016/j.egyr.2019.12.011
Putra, A. E., Rifky, & Fikri, A. (2018). Pemanfaatan Panas Buang Atap Seng dengan Menggunakan Generator Termoelektrik sebagai Sumber Energi Listrik Terbarukan. Prosiding Seminar Nasional Teknoka, 3, 38–43. https://doi.org/10.22236/teknoka.v3i0.2911
Wiradika, Y. (2019). Analisis Variasi Luasan Heatsink terhadap Unjuk Kerja Modul Generator Termoelektrik (TEG) Memanfaatkan Panas Buang Kondensor Kulkas. Universitas Jember.
Ginanjar, Hiendro, A., & Suryadi, D. (2019). Perancangan dan Pengujian Sistem Pembangkit Listrik Berbasis Termoelektrik dengan menggunakan Kompor Surya sebagai Media Pemusat Panas.
Hadiansyah, H., Roza, E., & Rosalina, R. (2018). Perancangan Pembangkit Listrik Tenaga Panas pada Knalpot Motor. Prosiding Seminar Nasional Teknoka, 3(2502), 70–78. https://doi.org/10.22236/teknoka.v3i0.2827
Purba, E. D., Kirom, M. R., & I, R. F. (2019). Analisis Pemanfaatan Energi Panas pada Panel Surya menjadi Energi Listrik menggunakan Generator Listrik. E-Proceeding of Engineering, 6(2), 4977–4985.
Kesek, F. (2013). Efektivitas Dan Kontribusi Penerimaan Pajak Parkir terhadap Pendapatan Asli Daerah Kota Manado. Jurnal EMBA, 1(4), 1922–1933.
YANG, X., LIU, S., CHEN, L., ZHOU, J., & YU, Y. (2019). Analysis and Design of an Effective Energy Utilizing TEG System. DEStech Transactions on Computer Science and Engineering, icaic, 88–96. https://doi.org/10.12783/dtcse/icaic2019/29409
Khalid, M., Syukri, M., & Gapy, M. (2016). Pemanfaatan Energi Panas sebagai Pembangkit Listrik Alternatif Berskala Kecil dengan menggunakan Termoelektrik. KITEKTRO: Jurnal Online Teknik ELektro, 1(3), 57–62.
Patel, J., & Singh, M. (2021). Thermoelectric Generators. Open Science Journal, May, 1–23.
Juwito, A. F. (2017). Heat Energy Harvesting untuk Sumber Listrik DC Skala Kecil. Jurnal Integrasi, 9(1), 92–96.
Arkundato, A., Misto, Jatisukmanto, G., Maulina, W., & Ardian Syah, K. (2020). Thermoelectric Generator Module as An Alternative Source of Electrical Energy in Rural Areas. REKAYASA-Jurnal Penerapan Teknologi Dan Pembelajaran, 18(1), 24–29.
Refbacks
- There are currently no refbacks.