Application of Very Low Frequency (VLF) Method for Underground River Estimation in Donorojo Sub-District, Pacitan
Abstract
Pacitan is included in the Gunung Sewu karst area in the Southern Mountain Zone, and carbonate rocks dominate the constituent rocks. Karst has a unique drainage system because it is dominated by subsurface flow. This research was conducted in Cemeng and Klepu villages, Donorojo sub-district, Pacitan, with 4 track data. Data were collected using the very low frequency electromagnetic (VLF-EM) method with a track length ranging from 200-450 m, a measurement spacing of 5 m, and a transmitter frequency of 19.8 kHz. Data processing uses filtering and inversion, resulting in a cross-section of resistivity values. Based on the subsurface resistivity cross-section profile, the cavity in the carbonate rock layer with a resistivity value of 0-500 Ωm is identified as an underground river. The underground river is found on tracks 1, 2, 3, and 4 near the surface, with a depth of about 30 m below the surface.
Keywords
Full Text:
PDFReferences
I. A. kusuma Wardani and S. U. Nafiah, “Analisis Spasial Potensi Tingkat Kekeringan di Kabupaten Pacitan,” J. Geogr., vol. 20, no. 1, pp. 1–8, Aug. 2022, doi: 10.26740/jggp.v20n1.p1-8. 2 J. D. McNeill, “Use of Electromagnetic Methods for Groundwater Studies,” in Geotechnical and Environmental Geophysics, no. 2, Society of Exploration Geophysicists, 1990, pp. 191–218. 3 A. Kuswanto, “Aplikasi Metoda Res-2D Untuk Eksplorasi Air Bawah Tanah Di Daerah Kars,” J. Air Indones., vol. 1, no. 2, pp. 226–234, 2005, doi: 10.29122/jai.v1i2.2349. 4 F. P. Bosch and I. Müller, “Improved karst exploration by VLF‐EM‐gradient survey: comparison with other geophysical methods,” Near Surf. Geophys., vol. 3, no. 4, pp. 299–310, Nov. 2005, doi: 10.3997/1873-0604.2005025. 5 R. W. Van Bemmelen, “The Geology of Indonesia. General Geology of Indonesia and Adjacent Archipelagoes,” Government Printing Office, The Hague. pp. 1–766, 1949. 6 M. Karous and S. E. Hjelt, “Linear Filtering of Vlf Dip‐Angle Measurements,” Geophys. Prospect., vol. 31, no. 5, pp. 782–794, 1983, doi: 10.1111/j.1365-2478.1983.tb01085.x. 7 M. Padlilah et al., “Identifikasi Sungai Bawah Permukaan pada Data Resistivitas 2d Konfigurasi Dipole-Dipole di Desa Gedompol, Kabupaten Pacitan,” J. Geosaintek, vol. 7, no. 3, pp. 125–134, Dec. 2021, doi: 10.12962/j25023659.v7i3.10950. 8 Fraser, “Contouring of Vlf-Em Data,” Geophysics, vol. 34, no. 6, pp. 958–967, 1969, doi: 10.1190/1.1440065. 9 M. A. Khalil and F. M. Santos, “Comparative Study Between Filtering and Inversion of VLF-EM Profile Data,” Arab. J. Geosci., vol. 4, no. 1–2, pp. 309–317, Feb. 2011, doi: 10.1007/s12517-010-0168-4. 10 F. A. Monteiro Santos, A. Mateus, J. Figueiras, and M. A. Gonçalves, “Mapping groundwater contamination around a landfill facility using the VLF-EM method — A case study,” J. Appl. Geophys., vol. 60, no. 2, pp. 115–125, Oct. 2006, doi: 10.1016/j.jappgeo.2006.01.002. 11 F. A. M. Santos, “Instructions for Running PrepVLF and Inv2DVLF 2-D Inversion of VLF-EM Single Frequency Programs,” Portugal, 2006. 12 Sungkono, B. J. Santosa, A. S. Bahri, F. M. Santos, and A. Iswahyudi, “Application of Noise-Assisted Multivariate Empirical Mode Decomposition in VLF-EM Data to Identify Underground River,” Adv. Data Sci. Adapt. Anal., vol. 8, no. 3, pp. 1–23, 2016, doi: 10.1142/S2424922X1650011X.
Refbacks
- There are currently no refbacks.