Development of Fiber Optic Sensor-Based Weight-In-Motion System For Bridge Applications
Abstract
Vehicles loaded with Over Dimension Overload (ODOL) cause damage to road infrastructure, traffic accidents, and endanger crossing transportation. ODOL vehicles also contribute to the death of people. This research focuses on characterizing the effect of moving loads on fiber optic light loss. Problem-solving approach through the optical fiber macrobending method. This research aims to be implemented in the WIM system concept. Macrobending comes from the weights contained in the body dump. The types of loading carried out are static and dynamic. Under dynamic loading, the speed variation is 0.1 m/s, 0.2m/s, and 0.3 m/s. The research results show that the greater the loading value, the greater the attenuation value of the optical fiber. This research applies to all three speed variations of the dummy dump truck, both front and rear wheels. Apart from that, the best sensitivity value is found at a speed variation of 0.1 m/s. The value is 2.029. This data can be used as a reference for the most recommended speed when a loaded vehicle passes through a fiber optic sensor-based WIM system.
Keywords
Full Text:
PDFReferences
Chen, S.-Z., Wu, G., Feng, D.-C., & Zhang, L. (2018). Development of a Bridge Weigh-in-Motion System Based on Long-Gauge Fiber Bragg Grating Sensors. Journal of Bridge Engineering, 23(9). https://doi.org/10.1061/(asce)be.1943-5592.0001283 Filograno, M. L., Corredera, P., Rodríguez-Plaza, M., Andrés-Alguacil, A., & González-Herráez, M. (2013). Wheel flat detection in high-speed railway systems using fiber bragg gratings. IEEE Sensors Journal, 13(12), 4808–4816. https://doi.org/10.1109/JSEN.2013.2274008 Humas. (2022). Sekretariat Kabinet Republik Indonesia _ Berlaku Penuh Awal 2023, Pemerintah Larang Angkutan Mobil Barang “Over Dimension and Overload.” https://setkab.go.id/berlaku-penuh-awal-2023-pemerintah-larang-angkutan-mobil-barang-over-dimension-and-overload/ Káčik, D., Tarjányi, N., Martinček, I., Maciak, J., Horák, J., & Maciaková, A. (2020). Optical sensor based on all-fiber interferometer for systems Weight in Motion. 13th International Conference ELEKTRO 2020, ELEKTRO 2020 - Proceedings, 2020-May. https://doi.org/10.1109/ELEKTRO49696.2020.9130302 KNKT. (2022). KNKT - KNKT _ ANGKUTAN ODOL SALAH SATU POTENSI BAHAYA DI ANGKUTAN PENYEBERANGAN. https://knkt.go.id/news/read/knkt-%3A-angkutan-odol-salah-satu-potensi-bahaya-di-angkutan-penyeberangan Kudryashov, N. A. (2020). Mathematical model of propagation pulse in optical fiber with power nonlinearities. Optik, 212. https://doi.org/10.1016/j.ijleo.2020.164750 Lydon, M., Robinson, D., Taylor, S. E., Amato, G., Brien, E. J. O., & Uddin, N. (2017). Improved axle detection for bridge weigh-in-motion systems using fiber optic sensors. Journal of Civil Structural Health Monitoring, 7(3), 325–332. https://doi.org/10.1007/s13349-017-0229-4 Lydon, M., Taylor, S. E., Robinson, D., Callender, P., Doherty, C., Grattan, S. K. T., & Obrien, E. J. (2014). Development of a bridge weigh-in-motion sensor: Performance comparison using fiber optic and electric resistance strain sensor systems. IEEE Sensors Journal, 14(12), 4284–4296. https://doi.org/10.1109/JSEN.2014.2332874 Oskoui, E. A., Taylor, T., & Ansari, F. (2020). Method and sensor for monitoring weight of trucks in motion based on bridge girder end rotations. Structure and Infrastructure Engineering, 16(3), 481–494. https://doi.org/10.1080/15732479.2019.1668436 Otto, G. G., Simonin, J. M., Piau, J. M., Cottineau, L. M., Chupin, O., Momm, L., & Valente, A. M. (2017). Weigh-in-motion (WIM) sensor response model using pavement stress and deflection. In Construction and Building Materials (Vol. 156, pp. 83–90). Elsevier Ltd. https://doi.org/10.1016/j.conbuildmat.2017.08.085 Rashed, A. N. Z., & Tabbour, M. S. F. (2017). Suitable Optical Fiber Communication Channel for Optical Nonlinearity Signal Processing in High Optical Data Rate Systems. Wireless Personal Communications, 97(1), 397–416. https://doi.org/10.1007/s11277-017-4511-x Rofianingrum, M. Y., Widiyatmoko, B., Kurniawan, E., Bayuwati, D., & Afandi, I. (2019). Fiber optic load sensor using microbend-deformer. Journal of Physics: Conference Series, 1191(1). https://doi.org/10.1088/1742-6596/1191/1/012007 Syukron, A. A., Marzuki, A., & Setyawan, A. (2017). Fabrication and Analysis Signal Optical Fiber Sensor Based on Bend Loss for Weight in Motion Applications. Journal of Physics: Conference Series, 909(1). https://doi.org/10.1088/1742-6596/909/1/012033 Wang, T., Mao, Y., Liu, B., Zhao, L., Ren, J., Zheng, J., & Wan, Y. (2022). Compact Fiber Optic Sensor for Temperature and Transverse Load Measurement Based on the Parallel Vernier Effect. IEEE Photonics Journal, 14(5). https://doi.org/10.1109/JPHOT.2022.3206313 Yu, Y., Cai, C. S., & Deng, L. (2016). State-of-the-art review on bridge weigh-in-motion technology. In Advances in Structural Engineering (Vol. 19, Issue 9, pp. 1514–1530). SAGE Publications Inc. https://doi.org/10.1177/1369433216655922 Zhang, L., Cheng, X., & Wu, G. (2021). A bridge weigh-in-motion method of motorway bridges considering random traffic flow based on long-gauge fibre Bragg grating sensors. Measurement: Journal of the International Measurement Confederation, 186. https://doi.org/10.1016/j.measurement.2021.110081
Refbacks
- There are currently no refbacks.