Pneumonia Classification Based on GLCM Features Extraction using K-Nearest Neighbor
Abstract
Pneumonia has been detected using Machine learning. The stages in this study began with preprocessing in 4 stages: resizing, cropping, filtering using a high pass filter, and Adaptive Histogram Equalization. The feature extraction process continued with 22 Gray Level Co-occurrence Matrix (GLCM) features and classification using K-Nearest Neighbor (KNN). The image used was 150 data sets for training on the classification of 3 classes with a ratio of 50:50:50 while training on two classes was 50 bacterial pneumonia and 50 viral pneumonia. The most optimal training data accuracy results were obtained using the angle direction on the GLCM, namely 135o with the KNN classification (k = 3). For the classification of two classes Using 40 data sets, an accuracy of 91% was obtained, while testing for three classes with 60 data sets was 83.3%.
Keywords
Full Text:
PDFReferences
Alhudhaif, A., Polat, K., &Karaman, O. (2021). Determination of COVID-19 pneumonia based on generalized convolutional neural ntwork model from chest X-ray images.Expert Systems with Applications,180, 115141. D A. Clausi, An analysis of co-occurrence texture statistics as a function of grey level quantization, Can. J. Remote Sensing, vol. 28, no.1, pp. 45-62, 2002. El-Dahshan, E. S. A., Bassiouni, M. M., Hagag, A., Chakrabortty, R. K., Loh, H., & Acharya, U. R. (2022). RESCOVIDTCNnet: A residual neural network-based framework for COVID-19 detection using TCN and EWT with chest X-ray images. Expert Systems with Applications, 117410. Hasoon, J. N., Fadel, A. H., Hameed, R. S., Mostafa, S. A., Khalaf, B. A., Mohammed, M. A., & Nedoma, J. (2021). COVID-19 anomaly detection and classification method based on supervised machine learning of chest X-ray images. Results in Physics, 31, 105045. Haukat, F., Raja, G., Ashraf, R., Khalid, S., Ahmad, M., & Ali, A. (2019). Artificial Neural Network Based Classification of Lung Nodules in CT Images Using Intensity, Shape and Texture Features. Journal of Ambient Intelligence and Humanized Computing, 10(10), 4135-4149. Hidayah, N., & Sahibu, S. (2021). Algoritma Multinomial Naïve Bayes Untuk Klasifikasi Sentimen Pemerintah Terhadap Penanganan Covid-19 Menggunakan Data Twitter. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 5(4), 820-826. Istianah, L., & Sumarti, H. (2020). Classification of Pneumonia in Thoracic X-Ray images based on texture characteristics using the MLP (Multi-Layer Perceptron) method. Journal Of Natural Sciences And Mathematics Research, 6(2), 78-84. Kermany, D. S., Goldbaum, M., Cai., Valentim, C. C. S., Liang, H., Baxter, S.L., ...Zhang, K. (2018). Identifying Medical Diagnosis and Treatable Diseases biy Image-Based Deep Learning. Cell, 172(5), 1122-1131. Kumar, D. (2020). Feature extraction and selection of kidney ultrasound images using GLCM and PCA. Procedia Computer Science, 167, 1722-1731. Soh. L and C. Tsatsoulis, Texture Analysis of SAR Sea Ice Imagery Using Gray Level Co-Occurrence Matrices, IEEE Transactions on Geoscience and Remote Sensing, vol. 37, no. 2, March 1999. Maysanjaya, I. M. D. (2020). Klasifikasi Pneumonia pada Citra X-rays Paru-paru dengan Convolutional Neural Network. Jurnal Nasional Teknik Elektro dan teknologi Informasi, 9(2), 190-195. Meng, X. (2018). Digital Image Processing Technology Based on MATLAB. Proceedings of the 4th International Conference on Virtual Reality, 79-82. Mulyana, T. M. S. (2017). Efek high pass filtering dengan koefesien nol pada citra biner. Jurnal Muara Sains, Teknologi, Kedokteran dan Ilmu Kesehatan, 1(1), 75-83. Pavithra, R., & Pattar. S.Y. (2015). Detection and Classification of Lung Disease-Pneumonia and Lung Cancer in Chest Radiology using Artificial Neural Network. International Journal of Scientific and Research Publications, 5(10), 1-5. Pratiwi, E. H., & Juniati, D. (2022). CLUSTERING PENYAKIT PARU-PARU BERDASARKAN RONTGEN DADA MENGGUNAKAN DIMENSI FRAKTAL BOX COUNTING DAN K-MEDOIDS. Jurnal Riset dan Aplikasi Matematika (JRAM), 6(1), 1-12. Putra, P., Pardede, A. M., & Syahputra, S. (2022). ANALISIS METODE K-NEAREST NEIGHBOUR (KNN) DALAM KLASIFIKASI DATA IRIS BUNGA. JTIK (Jurnal Teknik Informatika Kaputama), 6(1), 297-305. Qu, Y., Meng, Y., Fan, H., & Xu, R. X. (2022). Low-cost thermal imaging with machine learning for non-invasive diagnosis and therapeutic monitoring of pneumonia. Infrared Physics & Technology, 104201. R. M. Haralick, K. Shanmugam, and I. Dinstein. (1973, Nov). Textural Features of Image Classification. IEEE Transactions on Systems, Man and Cybernetics (vol. SMC-3, no. 6). Wijaya, I. W. A., & Kusumadewi, A. (2015). Penerapan Algoritma K-Means Pada Kompresi Adaptif Citra Medis MRI. Informatika, 11(2). Zhu, Y., & Huang, C. (2012). An adaptive histogram equalization algorithm on the image gray level mapping. Physics Procedia, 25, 601-608.
Refbacks
- There are currently no refbacks.