Sistem Pengukuran Detak Jantung Menggunakan Arduino Dan Android Berbasis Fotopletismogram
Abstract
Penelitian mengenai perancangan sistem pengukuran detak jantung berhasil dilakukan. Pengukuran detak jantung mandiri dapat membantu dalam menjaga kesehatan. Fotopletismogram atau PPG merupakan metode yang mampu memberi kemudahan dalam pengukuran detak jantung. Sensor PPG Easy Pulse Plugin adalah salah satu sensor PPG dengan modul pengondisi sinyal. Sensor PPG dihubungkan dengan Arduino untuk membaca sinyal dan memberikan perintah pengiriman secara nirkabel ke Android smartphone melalui Bluetooth. Aplikasi pada Android akan menampilkan sinyal dan hasil pengukuran detak jantung. Hasil pengukuran akan disimpan pada penyimpanan internal Android. Perhitungan detak jantung dilakukan berdasarkan interval waktu antar puncak pada sinyal PPG. Algoritma penentuan puncak sinyal PPG asli dapat dilakukan dengan memberikan kombinasi antara threshold dan batas interval pada sinyal PPG. Threshold terbaik adalah 2,13 V dan batas interval terbaik adalah 0,45 detik. Nilai kombinasi ini memberikan error rendah, yaitu 4,26%. Nilai sensitivitas, prediktif positif sekaligus.
Keywords
Full Text:
PDFReferences
1 Marasingha-Arachchige, S. U., Rubio-Arias, J. A., Alcaraz, P. E., & Chung, L. H. 2022. Factors that affect heart rate variability following acute resistance exercise: A systematic review and meta-analysis, Journal of Sport and Health Science, 11(3),376-392. 2022.
2 Zhong, L., Tan, R. S., Ng, E. Y., & Gista, D. J. 2019. Computational And Mathematical Methods in Cardiovascular Physiology. World Scientific Publishing Company, Chicago, USA.
3 Quer, G., Gouda, P., Galarnyk, M., Topol, E. J., & Steinhubl, S. R. 2020. Inter- and intraindividual variability in daily resting heart rate and its associations with age, sex,
sleep, BMI, and time of year: Retrospective, longitudinal cohort study of 92,457 adults. PLOS ONE, 15(2), 1-2.
4 Bazudewa, W.R., Satwika, I. P., & Juliharta, I. G. P. K., 2020. Klasifikasi Aritmia Dengan Heart Rate Variability Analisis menggunakan Metode Backpropagation. Jurnal Informatika dan Rekayasa Elektronika, 3(10), 1-2.
5 Giannetta, N., Campagna, G., Di Muzio, F., Di Simone, E., Dionisi, S., & Di Muzio, M. 2020. Accuracy and knowledge in 12-lead ECG placement among nursing students and nurses: a web-based Italian study. Acta Biomed, 91(2), hal 1-2.
6 Tamura, T., Maeda, Y., Sekine, M., & Yoshida, M. 2014. Wearable Photoplethysmographic Sensors - Past and Present. Electronics, 4(2), hal 282-302.
7 Almarshad, M. A., Islam, M. S., Al-Ahmadi, S., & BaHammam, A. S. 2022. Diagnostic Features and Potential Applications of PPG Signal in Healthcare: A Systematic Review. Healthcare, 10(3), 4-5.
8 Ding, X., Yan, B. P., Zhang, Y. T., Liu, J., Zhao, N., & Tsang, H. K. 2017. Pulse Transit Time Based Continuous Cuffless Blood Pressure Estimation: A New Extension and A Comprehensive Evaluation. Scientific Reports. 7(11554), 6-7.
9 Hartmann, V., Haipeng, L., Fei, C., Qian, Q., Stephen, H., & Dingchang, Z. 2019. Quantitative Comparison of Photoplethysmographic Waveform Characteristics: Effect of Measurement Site. Frontiers in Physiology, 1(10), 5.
10 Utomo, T. P. & Nuryani, N. 2020. Photoplethysmogram Peaks Detection Based on Moving Window Integration and Threshold for Heart Rate Calculation on Android Smartphone. Journal of Physics: Conference Series, 1825(2021),2-7.
11 Ramadhani, L.R. 2017. Rancang Bangun Alat Pengukur Detak Jantung Dan Panas Tubuh Dengan KomunikasiI Wifi (2, 4ghz) Menggunakan Android. Skripsi. Universitas Jember.
12 Zhu, Q., Tian, X., Wong, C., & Wu, M. 2019. Learning Your Heart Actions from Pulse: ECG Waveform Reconstruction From PPG, IEEE Internet of Things Journal, 8(23), 1-2.
13 Lim, H., Kim, B., Noh, G. J., & Yoo, S. K. 2019. A Deep Neural Network-Based Pain Classifier Using a Photoplethysmography Signal. Sensors, 19(2), 384.
14 Lu, X., Pan, M., & Yu, Y. 2018. QRS Detection Based on Improved Adaptive Threshold. Journal of Healthcare Engineering, 2018(7), 1-8.
15 Kazemi, K., Laitala, J., Azimi, I., Liljeberg, P., & Rahmani, A. M. 2022. Robust PPG Peak Detection Using Dilated Convolutional Neural Networks. Sensors, 22(16), 14-15.
16 Yulidarti, H. 2020. Rancang Bangun Alat Pengukur Detak Jantung Menggunakan Komunikasi Wifi dengan Android. Jurnal Teknik Elektro dan Vokasional, 6(1), 279.
17 Esgalhado, F., Batista, A., Vassilenko, V., Russo, S., & Ortigueira, M. 2022. Peak Detection and HRV Feature Evaluation on ECG and PPG Signals. Symmetry, 14(6),7-8.
18 Han, D., Bashar, K. S. Lazaro, J., Mohaghegian, F., Peitzch, A., Nishita, N., Ding, E., Dickson, E. L., DiMezza, D., Scott, J., Whitcomb, C., Fitzgibbons, T. P., McManus, D. D., & Chon, K. H. 2022. A Real-Time PPG Peak Detection Method for Accurate Determination of Heart Rate during Sinus Rhythm and Cardiac Arrhythmia. Biosensors. 12(82), 8-9.
19 Suganti, L., Muniyandi, M. 2009. Effect of Upper Arm Cuff Pressure on Pulse Morphology using Fotopletismogram. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009, 1794-1795.
20 Argüello, E. 2019. The mountaineer’s method for peak detection in photoplethysmographic signals. Revista Facultad de Ingeniería, (90), 43-45.
21 Fine, J., Branan, K. L., Rodriguez, A. J., Boonya-Ananta, T., Ajmal, J. C. Ramella-Roman, McShane, M. J., & Coté, G. L. 2021. Sources of Inaccuracy in Photoplethysmography for Continuous Cardiovascular Monitoring. Biosensors (Basel), 11(4), 8-27.
Refbacks
- There are currently no refbacks.