Estimation Model Peak Ground Acceleration at Bedrock and Surface of The Pasaman Barat Earthquake on February 25, 2022 M_w 6.1

Furqon Dawam Raharjo, Syafriani Syafriani, Suaidi Ahadi

Abstract

The earthquake occured on february 25, 2022 in West Pasaman, Province West Sumatera with momen magnitude Mw6.1, produced strong ground motion so that many several buildings were damaged.  The peak ground  acceleration (PGA) represents its level ground acceleration in bedrock and peak surface acceleration (PGAm) describes the acceleration value on the surface which depends on the amplification factor and the type of soil classification. Information  peak ground acceleration (PGA) and peak surface acceleration (PGAm) values plays an important role in describing the level of damage due to earthquake events. The purpose this study for determine the peak ground  acceleration (PGA) and  peak surface acceleration (PGAm) for West Pasaman earthquake Mw6.1 using boore (1997) attenuation model. In this study using parameter data main earthquake and then peak ground acceleration (PGA) value calculated each grid points and  then analysis peak surface acceleration (PGAm) value is based on the effect of site class from information Vs30 USGS model on peak ground acceleration (PGA) at bedrock from SNI 1726 : 2012. The result in this study showed peak ground acceleration and  peak surface acceleration value  in due West Pasaman earthquake  ranged  between 0.066 - 0.345 g and 0.223 - 0.627 g. The areas affected by heavy damage occured  in Kajai, Rimbo Panti, Malampah and Tigo Nagari Subdistrict with peak ground acceleration and peak surface acceleration value around 0.115 - 0,345 g and 0.423 - 0.627 g respectively and was dominated with type site class moderate soil (SD) based on Vs30 data form USGS model.

Keywords

Peak Ground Acceleration (PGA); Peak Ground Aceleration at surface (PGAm); Boore (1997) Atenuation Model ; Pasaman Barat Earthquake

Full Text:

PDF

References

  1. Bellier, O., & Sébrier, M. (1994). Relationship between tectonism and volcanism along the Great Sumatran fault zone deduced by SPOT image analyses. Tectonophysics, 233(3-4), 215-231.
  2. Boore, D. M., Joyner, W. B., & Fumal, T. E. (1997). Equations for estimating horizontal response spectra and peak acceleration from western North American earthquakes: a summary of recent work. Seismological research letters, 68(1), 128-153.
  3. Dewanto, B. G., Priadi, R., Heliani, L. S., Natul, A. S., Yanis, M., Suhendro, I., & Julius, A. M. (2022). The 2022 Mw 6.1 Pasaman Barat, Indonesia Earthquake, Confirmed the Existence of the Talamau Segment Fault Based on Teleseismic and Satellite Gravity Data. Quaternary, 5(4), 45.
  4. Douglas, J., & Boore, D. M. (2018). Peak ground accelerations from large (M≥ 7.2) shallow crustal earthquakes: a comparison with predictions from eight recent ground-motion models. Bulletin of Earthquake Engineering, 16(1), 1-21.
  5. Dhakal, Y. P., Kunugi, T., Kimura, T., Suzuki, W., & Aoi, S. (2019). Peak ground motions and characteristics of nonlinear site response during the 2018 Mw 6.6 Hokkaido eastern Iburi earthquake. Earth, Planets and Space, 71, 1-26.
  6. Handayani, L., Mulyadi, D., Wardhana, D. D., & Nur, W. H. (2009). Percepatan pergerakan tanah maksimum daerah Cekungan Bandung: Studi kasus gempa Sesar Lembang. Jurnal Geologi dan Sumber daya Mineral, 19(5), 333-337.
  7. Handayani, L., Hananto, N. D., Anggono, T., Syuhada, S., Gaol, K. L., & Aribowo, S. (2017). Penentuan Percepatan Tanah Puncak di Pulau Simeulue dengan Metode Deterministik. Jurnal Lingkungan dan Bencana Geologi, 8(3), 135-142.
  8. Hakim, A. C. 2019. Penentuan Ground Profile Dan Peak Surface Acceleration (PSA) Dengan Metode Inversi Mikrotremor Single Station Untuk Zonasi Bahaya Gempabumi Pulau Lombok. Skripsi, Institut Teknologi Surabaya.
  9. Kementerian Pekerjaan Umum. (2002). Standar Perencanaan Ketahanan Gempauntuk Struktur Bangunan Gedung, SNI 03 1726 2012. Jakarta: Kementerian Pekerjaan Umum.
  10. Kramer S.L, 1996, Geotecnical Earthuake Engineering, Prentice Hall, New Jersey
  11. Kementerian Pekerjaan Umum. (2002). Standar Perencanaan Ketahanan Gempauntuk Struktur Bangunan Gedung, SNI 03 1726 2012. Jakarta: Kementerian Pekerjaan Umum.
  12. Mai, P. M., Aspiotis, T., Aquib, T. A., Cano, E. V., Castro‐Cruz, D., Espindola‐Carmona, A.,& Jónsson, S. (2023). The destructive earthquake doublet of 6 February 2023 in South‐Central Türkiye and Northwestern Syria: initial observations and analyses. The Seismic Record, 3(2), 105-115.
  13. Mase, L. Z., Likitlersuang, S., & Tobita, T. (2018). Analysis of seismic ground response caused during strong earthquake in Northern Thailand. Soil Dynamics and Earthquake Engineering, 114, 113-126.
  14. McCaffrey, R. (2009). The tectonic framework of the Sumatran subduction zone. Annual Review of Earth and Planetary Sciences, 37, 345-366
  15. Pawirodikromo, W., 2012. Seismologi Teknik Dan Rekayasa Kegempaan :Percepatan Getaran Tanah. Yogyakarta, Indonesia : Pustaka Pelajar.
  16. Rock, N. M. S., Aldiss, D. T., Aspden, J. A., Clarke, M. C. G., Djunuddin, A., Kartawa, W., & Whandoyo, R. (1983). Peta Geologi Lembar Lubuk sikaping skala 1: 250.000. Sumatra, Puslitbang Geologi.
  17. Sieh, K., &Natawidjaja, D. H, 2000. Ground Neotectonic Of The Sumatera Fault, Indonesia. Journal Of Geophysical Research, vol. 105, pp. 295-326.
  18. Sunardi, B., Pitriani, W., Rohadi, S., Sulastri, S., & Setiadi, T. A. P. (2017). Estimasi Percepatan Tanah Maksimum dan Spektra Percepatan Akibat Gempa 7 Desember 2016 di Kabupaten Pidie Jaya. Proceeding, September.
  19. Stewart, J. P., Chiou, S. J., Bray, J. D., Graves, R. W., Somerville, P. G., & Abrahamson, N. A. (2002). Ground motion evaluation procedures for performance-based design. Soil dynamics and earthquake engineering, 22(9-12), 765-772.
  20. Trugman, D. T., & Shearer, P. M. (2018). Strong correlation between stress drop and peak ground acceleration for recent M 1–4 earthquakes in the San Francisco Bay area. Bulletin of the Seismological Society of America, 108(2), 929-945.
  21. Taruna, R.M., Banyunegoro, V.H, Daniarsyad, G. 2018 . Peak ground at surface for Mataram City a return period of 2500 years using probabilistic method. MATEC web conferences 195 03019, pp. 1 - 10.
  22. Tim Pusat Studi Gempa Nasional. 2017. Peta Sumber Dan Bahaya Gempa Indonesia Tahun 2017. Jakarta, Indonesia :Puslibang Kemen PUPR.
  23. Worden, C. B., Wald, D. J., Allen, T. I., Lin, K., Garcia, D., & Cua, G. (2010). A revised ground-motion and intensity interpolation scheme for ShakeMap. Bulletin of the Seismological Society of America, 100(6), 3083-3096.
  24. Wu, Y. M., Teng, T. L., Shin, T. C., & Hsiao, N. C. (2003). Relationship between peak ground acceleration, peak ground velocity, and intensity in Taiwan. Bulletin of the Seismological Society of America, 93(1), 386-396.
  25. Zhang, Z., Fleurisson, J. A., & Pellet, F. (2018). The effects of slope topography on acceleration amplification and interaction between slope topography and seismic input motion. Soil Dynamics and Earthquake Engineering, 113, 420-431.
  26. Zhang, N., Gao, Y., & Pak, R. Y. (2017). Soil and topographic effects on ground motion of a surficially inhomogeneous semi-cylindrical canyon under oblique incident SH waves. Soil Dynamics and Earthquake Engineering, 95, 17-28.

Refbacks

  • There are currently no refbacks.