Kajian Literatur Fase Adiabatik untuk mempercepat Dinamika Kuantum Adiabatik pada Osilator Harmonik

Mayasari Hutagalung, Iwan Setiawan, Dedy Hamdani

Abstract

This research is a theoretical research by reviewing the literature that discusses the method of accelerating quantum dynamics adiabatically. This method for accelerating quantum dynamics is so- called the fast-forward method. This method was proposed by Masuda and Nakamura in 2010. In this method, the ground state and first excited state wave function is modified by adding an additional term to the wave function which is called the adiabatic phase. This is done so that the time-dependent Schrodinger equation remains fulfilled. The accelerating process is carried out using an adiabatic parameter that goes to zero. Fast-forward method is applied first to get the adiabatic phase. Furthermore, by reviewing the wave function at the ground state and first excited state we get the adiabatic phase which ensures that the harmonic oscillator can move from the initial state to the final state in a shorter time.

Keywords

Fase Adiabatik; Dinamika Kuantum; Osilator Harmonik; Fast-Forward

Full Text:

PDF

References

  1. Benggadinda, A., & Setiawan, I. 2021. Metoda Fast Forward Untuk Mempercepat Dinamika Kuantum Adiabatik Pada Spin Tunggal. JST (Jurnal Sains Dan Teknologi), 10(2), 274–280. https://doi.org/10.23887/jstundiksha.v10i2.39876
  2. Hartmann, A., Mukherjee, V., Niedenzu, W., & Lechner, W. 2020. Many-body quantum heat engines with shortcuts to adiabaticity. Physical Review Research, 2(2), 1–13. https://doi.org/10.1103/PhysRevResearch.2.023145
  3. Masuda, S., & Nakamura, K. 2010. Fast-forward of adiabatic dynamics in quantum mechanics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 466(2116), 1135–1154. https://doi.org/10.1098/rspa.2009.0446
  4. Setiawan, I. 2019. Dinamika Spin Kuantum Adiabatik Dipercepat Pada Model Landau-Zener Dan Model Ising. Jurnal Kumparan Fisika, 2(1), 57–64. https://doi.org/10.33369/jkf.2.1.57-64
  5. Nakamura, K., Khujakulov, A., Avazbaev, S., & Masuda, S. 2017. Fast forward of adiabatic control of tunneling states. Physical Review A, 95(6), 1–15. https://doi.org/10.1103/PhysRevA.95.062108
  6. Setiawan, I., Gunara, B. E., & Nakamura, K. 2019. Accelerated adiabatic dynamics in a triangular spin cluster. Journal of Physics: Conference Series, 1204(1), 1–12. https://doi.org/10.1088/1742-6596/1204/1/012020
  7. Aini, N. R. (2020). Sejarah Perkembangan Fisika (Kuantum) dari Klasik Hingga Modern. 4(3), 57–71. https://doi.org/10.13140/RG.2.2.17085.08160
  8. Guéry-Odelin, D., Ruschhaupt, A., Kiely, A., Torrontegui, E., Martínez-Garaot, S., & Muga, J. G. 2019. Shortcuts to adiabaticity: Concepts, methods, and applications. Reviews of Modern Physics, 91(4), 1–61. https://doi.org/10.1103/RevModPhys.91.045001
  9. Setiawan, I., Gunara, B. E., Avazbaev, S., & Nakamura, K. 2019. Fast-forward approach to adiabatic quantum dynamics of regular spin clusters: nature of geometry-dependent driving interactions. 1–17.
  10. Setianingsih, Y., Akhsan, H., & Andriani, N., 2017. Relasi rekursi dan ortogonalitas polinom hermite pada fungsi gelombang osilator harmonik kuantum dalam studi kasus ketidakpastian Heisenberg. Prosiding Seminar Nasional Pendidikan IPA, 1(1), 163–170.
  11. Sholihah, F. M., S, S., & Variani, V. I., 2016. Analisis Energi Osilator Harmonik Menggunakan Metode Path Integral Hypergeometry dan Operator. Indonesian Journal of Applied Physics, 2(02), 6–15. https://doi.org/10.13057/ijap.v2i02.1280
  12. Chen, X., & Muga, J. G. 2010. Transient energy excitation in shortcuts to adiabaticity for the time-dependent harmonic oscillator. Physical Review A - Atomic, Molecular, and Optical Physics, 82(5), 1–7. https://doi.org/10.1103/PhysRevA.82.053403
  13. Masuda, S., & Nakamura, K., 2010b. Fast-forward of quantum adiabatic dynamics in electro-magnetic field. Physics, 1–25. http://arxiv.org/abs/1004.4108
  14. Chung, H. C., Martínez-Garaot, S., Chen, X., Muga, J. G., & Tseng, S. Y., 2019. Shortcuts to adiabaticity in optical waveguides. Epl, 127(3), 159–167. https://doi.org/10.1209/0295-5075/127/34001
  15. Babajanova, G., Matrasulov, J., & Nakamura, K., 2018. Quantum gas in the fast forward scheme of adiabatically expanding cavities: Force and equation of state. Physical Review E, 97(4), 1–13. https://doi.org/10.1103/PhysRevE.97.042104
  16. Wahdah, N., Arman, Y., & Lapanporo, B. P., 2016. Penentuan Energi Keadaan Dasar Osilator Kuantum Anharmonik Menggunakan Metode Kuantum Difusi Monte Carlo. Positron, 6(2), 317–323. https://doi.org/10.26418/positron.v6i2.16837
  17. Griffiths, D. (2005). Introduction to Quantum Mechanics. Reed College. Pearson Education International. United States of America

Refbacks