Interpretation of 3 D Magnetic Inversion Results in the Majenang Area, Indonesia
Abstract
The Total Magnetic Intensity (TMI) data requires conversion using Reduction to Pole (RTP) or Reduction to Equator (RTE) filters prior to the interpretation process. However, the low latitude location causes stability issue in the RTP and is replaced by the RTE computing processes. Noteworthy, the RTE results have inverted polarity. An inverse modeling scheme based on direct use of TMI data using equivalent‑source provides an alternative solution to address this issue. In this research, synthetic modeling of a strike‑slip fault geometry is conducted to assist the interpretation process in order to guide during recognizing similar anomaly contour patterns in field datasets. TMI data interpretation was conducted in a volcanic area located in Majenang, Central Java. According to the research findings, a dextral strike‑slip fault with a northwest‑southeast lineament is delineated. This fault is interpreted as part of the Pamanukan‑Cilacap Fault Zone (PCFZ). Additionally, a circular anomaly is exposed and inferred to be the edge of ancient‑volcanic‑caldera (ring‑fault or caldera‑rims) in the study area. Both results were confirmed through a comparison of geomagnetic and gravity data. The high‑susceptibility zone correlates well with the high‑density zone and the outcrop of the Sangkur Volcano's intrusion body, which is inferred precedes the intrusion body of the Kumbang Volcano. The intrusive bodies located around the PCFZ manifest the presence of a weak zone that has been intruded by magmatism, contributing to the formation of volcanoes along the fault as a volcano‑tectonic setting in the area.
Keywords
Full Text:
PDFReferences
1 Hutubessy, S. 2008. Pola Cekungan Dan Struktur Bawah Permukaan Ditinjau Dari Hasil Analisis Gaya Berat Dan Magnet di Daerah Banjarnegara, Jawa Tengah Bagian Selatan, J. Geol. dan Sumberd. Miner, 18(4), 265‑278.
2 Armandita, C., Mukti, M. M., & Satyana, A. H. 2009. Intra‑Arc Trans‑Tension Duplex of Majalengka to Banyumas Area: Prolific Petroleum Seeps and Opportunities in West‑Central Java Border, Indones. Pet. Assoc. Thirty‑Third Annu. Conv. Exhib. May 2009.
3 Iswahyudi, S., Permanajati, I., Setijadi, R., Zaenurrohman, J. A., & Pamungkas, J. A. 2020. The Origin of Geothermal Water Around Slamet‑Volcano - Paguyangan - Cipari, Central Java, Indonesia, J. Geosci. Eng. Environ. Technol, 5(4), 206–210.
4 Indarto, S., Sudarsono, S., Setiawan, I., Permana, H., Al Kausar, A., Yuliyanti, A., & Yuniati, M. D. 2014. Batuan Pembawa Emas Pada Mineralisasi Sulfida Berdasarkan Data Petrografi Dan Kimia Daerah Cihonje, Gumelar, Banyumas, Jawa Tengah. RISET Geologi dan Pertambangan, 24(2), 115-130.
5 Sudarsono, Indarto S., Setiawan I., Yuniati, M. D. & Yuliyanti A. 2010. Model Genesa Mineralisasi Hidrotermal Daerah Cihonje, Kabupaten Banyumas, Jawa Tengah. Prosiding Pemaparan Hasil Penelitian Puslit Geoteknologi‑LIPI 2010. 33 – 42.
6 Chusni, A. & Puswanto, E. 2009. Alterasi dan Mineralisasi di Daerah Pertambangan Rakyat Cihonje, Kecamatan Gumelar, Kabupaten Banyumas Berdasarkan Analisis Kimia dan Mineralogi. Prosiding Pemaparan Hasil Penelitian Puslit Geoteknologi – LIPI 2009. 19‑28.
7 Katili, J. A. 1973. GEOCHRONOLOGY OF West INDONESIA AND ITS IMPLICATION ON PLATE TECTONICS, Techtonophysics, 19, 195‑212.
8 Katili, J. A. 1975. Volcanism and plate tectonics in the Indonesian island arcs, Tectonophysics, 26(3‑4), 165‑188.
9 Soeria-Atmadja, R., Maury, R. C., Bellon, H., Pringgoprawiro, H., Polve, M., & Priadi, B. 1994. Tertiary magmatic belts in Java. Journal Southeast Asian Earth Science, 9(1‑2), 13‑27.
10 Bachri, S. 2014. Pengaruh Tektonik Regional Terhadap Pola Struktur dan Tektonik Pulau Jawa, Geol. dan Sumberd. Miner, 15(4), 215‑221.
11 Hall, R. 2012. Late Jurassic-Cenozoic reconstruction of the Indonesian region and the Indian Ocean. Tectonophysics 570‑571(2012), 1‑41.
12 Metcalfe, I. 1996. Pre-Cretaceous evolution of SE Asian terranes. Tectonic Evolution of Southeast Asia, Geological Society Special Publication, 106, 97‑122.
13 Metcalfe, I. 2011. Tectonic framework and Phanerozoic evolution of Sundaland, Gondwana Research, 19(1), 3‑21.
14 Metcalfe, I. 2013. Gondwana dispersion and Asian accretion: Tectonic and Palaeogeographic evolution of eastern Tethys, Journal of Asian Earth Sciences, 66(2013), 1‑33.
15 Smyth, Helen R., Hall, Robert., Nichols & Gary, J. 2008. Cenozoic volcanic arc history of East Java, Indonesia: The stratigraphic record of eruptions on an active continental margin. The Geological Society of America, Special Paper 436: Formation and Application of the Sedimentary Record in Arc Collision Zones, 2436(10), 199‑222.
16 Batara, B. & Xu, C. 2022. Evolved Magmatic Arcs of South Borneo: Insights into Cretaceous Slab Subduction. Gondwana Research, 111(2022), 142‑164.
17 Advokaat, Eldert L., van Hinsbergen, Douwe J. J. 2024. Finding Argoland: Reconstructing a microcontinental archipelago from the SE Asian accretionary orogen. Gondwana Research 128, 161‑263.
18 Monnier, C., Polve, M., Girardeau, J., Pubellier, M., Maury, R. C., Bellon, H., Permana, H., 1999. Extensional to Compressive Mesozoic Magmatism at the SE Eurasia Margin as Recorded from the Meratus Ophiolite (SE Borneo, Indonesia). Geodinamica Acta, 12(1), 43‑55.
19 Wakita, K., Miyazaki, K., Zulkarnain, I., Sopaheluwakan, J., & Sanyoto, P. 1998. Tectonic implications of new age data for the Meratus Complex of south Kalimantan, Indonesia, Isl. Arc, 7(1‑2), 202‑222.
20 Hall, R., Clements, B., & Smyth, H. R. 2009. Sundaland: basement character, structure and plate tectonic development, Proc. Indones. Pet. Assoc. 33rd Annu. Conv., on July, 1‑27.
21 Satyana & Awang, H. 2003. Accretion and dispersion of southeast sundaland: the growing and slivering of a continent. Proceedings of Joint Convention Jakarta, Indonesia, 2003
22 Bronto, S. 2006. Fasies gunung api dan aplikasinya, Indones. J. Geosci., 1(2), 59‑71.
23 Sutawidjaja, I. S., & Sukhyar, R. 2009. Cinder cones of Mount Slamet, Central Java, Indonesia, Indones. J. Geosci., 4(1), 57‑75.
24 Bachri, S. 2017. Pengaruh Kegiatan Tektonik & Vulkanisme Terhadap Sedimentasi Endapan Paleogen-Neogen di Cekungan Serayu, Jawa. LIPI Press.
25 Blakely, R. J. 1995. Potential Theory in Gravity and Magnetic Applications. Cambridge University Press.
26 Zhdanov, M. S. 2002. GEOPHYSICAL INVERSE THEORY AND REGULARIZATION PROBLEMS.
27 Menke, W. 1984. Geophysical Data Analysis: Discrete Inverse Theory.
28 Handyarso, A. 2022. Ring-fault delineation of an ancient volcanic caldera based on 3‑D gravity inverse modeling in the Majenang region, Indonesia, Kurvatek, 7(2), 103‑114.
29 Handyarso, A. 2022. Caldera-Like Delineation and Geological Resources Identification of Majenang Area, Indonesia by Gravity and Magnetic Data Inversions. IOP Conference Series: Earth and Environmental Science 1227 (012027).
30 Kastowo. 1975. Geologic Map of The Majenang Quadrangle, Java Scale: 1:100.000. Bandung: Pusat Penelitian dan Pengembangan Geologi.
31 Muchsin, N., Ryacudu, R., Kunto, T. W., Budiyani, S., Yulianto, B., Wiyanto, B., ... & Riandra, F. 2002. Miocene hydrocarbon system of the Southern Central Java region. In Proceeding of 31st Annual Convention of Indonesian Association of Geologists. 31st Annual Convention, 58‑67.
32 Lunt, P., Burgon, G. & Baky, A. 2009. The Pemali Formation of Central Java and Equivalents: Indicators of Sedimentation on an Active Plate Margin. Journal of Asian Earth Sciences, 34, 100‑113.
Refbacks
- There are currently no refbacks.