Kajian Literatur Karakteristik Lapisan Keramik Oksida yang Ditumbuhkan Diatas Paduan Zirkonium dengan Metode Plasma Electrolytic Oxidation

Maman Kartaman Ajiriyanto, Anawati Anawati

Abstract

Bahan Zircaloy-4 telah digunakan sebagai bahan kelongsong elemen bakar reaktor nuklir tipe pressurized water reactor, PWR. Kelongsong Zr-4 tersebut menghadapi kondisi temperatur dan tekanan tinggi, iradiasi neutron, dan penyerapan gas (hidrogen, oksigen).  Pada suhu dan tekanan tinggi, paduan Zr-4 mudah mengalami oksidasi dan kecepatan oksidasi meningkat pada suhu 800-1200°C. Upaya untuk meningkatkan ketahanan oksidasi kelongsong Zr-4 adalah pelapisan permukaan dengan metode seperti thermal spray, physical vapor deposition, cladding, heat treatment, dan chemical vapor deposition. Pada artikel review ini menggambarkan dan menjelaskan metode pelapisan alternatif yaitu plasma electrolytic oxidation (PEO) yang secara khusus diaplikasikan pada substrat zirkonium. Aspek lain yang dibahas adalah parameter proses yang mempengaruhi kualitas lapisan, dan karakteristik yang khas dari lapisan yang dihasilkan dengan metode PEO. Plasma electrolytic oxidation (PEO) merupakan metode pelapisan yang menjanjikan untuk menghasilkan lapisan oksida keramik dengan kekuatan mekanik dan termal yang tinggi. Proses PEO menggunakan peralatan yang sederhana dan bahan yang ramah lingkungan. Lapisan oksida zirkonium (ZrO2) yang terbentuk pada permukaan substrat Zr-4 mempunyai titik lebur sangat tinggi yaitu 2715°C dan tampang lintang neutron termal sangat rendah yaitu 0,18 barn. Karakteristik lapisan oksida keramik yang dihasilkan dipengaruhi oleh parameter proses PEO yaitu rapat arus, jenis dan konsentrasi elektrolit, bahan aditif pada elektrolit dll. Hingga saat ini, proses pelapisan metode PEO pada paduan Zirkonium (Zr) relatif belum banyak dibahas secara mendalam jika dibandingkan dengan logam lainnya seperti Al, Mg, dan Ti. Salah satu permasalahan yang masih dihadapi dalam pelapisan PEO terhadap substrat Zr-4 adalah porositas relatif tinggi dan jumlah fasa t-ZrO2 pada inner dan outer layer yang relatif rendah yang dapat mengurangi kekuatan mekanik dan ketahanan korosinya. Penyelesaian masalah untuk meningkatkan kualitas lapisan PEO adalah dengan optimasi parameter proses PEO yaitu rapat arus ,dan jenis dan konsentrasi elektrolit. Dalam kajian literatur ini didiskusikan strategi optimasi rapat arus, penggunaan variasi elektrolit, dan penambahan aditif pada proses PEO  untuk meningkatkan sifat mekanik dan korosi lapisan Modifikasi permukaan dengan proses PEO dapat diaplikasikan pada paduan zirkonium termasuk paduan Zr-4 sebagai komponen atau kelongsong bahan bakar reaktor nuklir tipe PWR. Metode PEO ini sangat potensial digunakan pada kelongsong Zr-4 untuk meningkatkan ketahanan oksidasi suhu tinggi dan meningkatkan efisiensi bahan bakar didalam reaktor nuklir.

Keywords

Kelongsong Zr-4; Plasma Electrolytic Oxidation; elektrolit silikat dan aluminat; aditif Y2O3, bahan bakar nuklir.

Full Text:

PDF

References

1 Lee, Y., Lee, J. I., & NO, H. C. 2017. Mechanical analysis of surface-coated zircaloy cladding. Nucl. Eng. Technol., 49 (5), 1031–1043.

2 Usui, T., Sawada, A., Amaya, M., Suzuki, A., Chikada, T., & Terai, T. 2015. SiC coating as hydrogen permeation reduction and oxidation resistance for nuclear fuel cladding. J. Nucl. Sci. Technol., 52 (10), 1318–1322.

3 Velciu, L., Meleg, T., & Mihalache, M. 2007. Study of the hydride morphology in the candu reactor pressure tube modified by heat treatment. Mater. Technol. - 4th Int. Conf. Mater. Manuf. Technol. MATEHN’06, 23, 237–240.

4 Luscher, W. G., Gilbert, E. R., Pitman, S. G., & Love, E. F. 2013. Surface modification of Zircaloy-4 substrates with nickel zirconium intermetallics. J. Nucl. Mater., 433 (1–3), 514–522.

5 Kim, H. G., Yang, J. H., Kim, W. J., & Koo, Y. H. 2016. Development Status of Accident-tolerant Fuel for Light Water Reactors in Korea. Nucl. Eng. Technol., 48 (1), 1–15.

6 Yerokhin, A. L., Nie, X., Leyland, A., Matthews, A., & Dowey, S. J. 1999. Plasma electrolysis for surface engineering. Surf. Coat. Technol., 122, 73–93.

7 Anawati, Asoh, H., & Ono, S. 2018. Degradation behavior of coatings formed by the Plasma Electrolytic Oxidation technique on AZ61 magnesium alloys containing 0, 1 And 2 Wt% Ca. Int. J. Technol., 9 (3), 622–631.

8 Anawati, A., & Gumelar, M. D. 2018. Characterization of coatings formed on AZX magnesium alloys by plasma electrolytic oxidation. AIP Conf. Proc., vol. 1964, no. May.

9 Clyne, T. W., Troughton, S. C., Clyne, T. W., & Troughton, S. C. 2018. A review of recent work on discharge characteristics during plasma electrolytic oxidation of various metals oxidation of various metals. Int. Mater. Rev., 1–36.

10 Simka, W., Sowa, M., Socha, R. P., Maciej, A., & Michalska, J. 2012. Anodic oxidation of zirconium in silicate solutions. Electrochim. Acta., 104, 518–525

11 Hussein, R. O., Northwood, D. O., & Nie, X. 2010. Coating growth behavior during the plasma electrolytic oxidation process. J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., 28 (4), 766–773.

12 Tsai, D. S., & Chou, C. C. 2018. Review of the soft sparking issues in plasma electrolytic oxidation. Metals (Basel)., 8 (2), 1–22.

13 Lee, C., Kim, H., Seon, H., Hwan, M., & Kim, J. 2012. Micro / nanostructure evolution of zircaloy surface using anodization technique : Application to nuclear fuel cladding modification. Appl. Surf. Sci., 258 (22), 8724–8731.

14 Krishna, L. R., Madhavi, Y., Babu, P. S., Rao, D. S., & Padmanabham, G. 2019. Strategies for corrosion protection of non-ferrous metals and alloys through surface engineering. Mater. Today Proc., 15, 145–154.

15 Dyer, C. K. 1974. Electrolytic Rectification and Cathodic. Technology, 1 (C), 121–127.

16 Wang, L., Hu, X., & Nie, X. 2013. Deposition and properties of zirconia coatings on a zirconium alloy produced by pulsed DC plasma electrolytic oxidation. Surf. Coat. Technol., 221, 150–157.

17 Cheng, Y., Matykina, E., Skeldon, P., & Thompson, G. 2011. Characterization of plasma electrolytic oxidation coatings on Zircaloy-4 formed in different electrolytes with AC current regime. Electrochim. Acta, 56 (24), 8467–8476.

18 Cheng, Y., Wu, F., Dong, J., Wu, X., & Xue, Z. 2012. Comparison of plasma electrolytic oxidation of zirconium alloy in silicate- and aluminate-based electrolytes and wear properties of the resulting coatings. Electrochim. Acta, 85, 25–32.

19 Cheng, Y. L., & Wu, F. 2012. Plasma electrolytic oxidation of zircaloy-4 alloy with DC regime and properties of coatings. Trans. Nonferrous Met. Soc. China (English Ed., 22 (7), 1638–1646.

20 Chen, Y., Nie, X., & Northwood, D. O. 2010. Investigation of Plasma Electrolytic Oxidation ( PEO ) coatings on a Zr – 2 . 5Nb alloy using high temperature / pressure autoclave and tribological tests. Surf. Coat. Technol., 205 (6), 1774–1782.

21 Malayoğlu, U., Tekin, K. C., Malayoğlu, U., & Belevi, M. 2019. Mechanical and electrochemical properties of PEO coatings on zirconium alloy. Surf. Eng., 1–9.

22 Wang, Y., Tang, H., Wang, R., Tan, Y., Zhang, H., & Peng, S. 2016. Cathodic voltage-dependent composition, microstructure and corrosion resistance of plasma electrolytic oxidation coatings formed on Zr-4 alloy. RSC Adv., 6, (41), 34616–34624.

23 Anawati, Asoh, H., & Ono, S. 2016. Effect of alloying elements Al and Ca on corrosion resistance of plasma anodized Mg alloys. AIP Conf. Proc., 1725.

24 Cheng, Y., Cao, J., Peng, Z., Wang, Q., & Matykina, E. 2014. Wear-resistant coatings formed on Zircaloy-2 by plasma electrolytic oxidation in sodium aluminate electrolytes. Electrochim. Acta, 116, 453–466.

25 Yan, Y., Han, Y., Li, D., Huang, J., & Lian, Q. 2010. Effect of NaAlO2 concentrations on microstructure and corrosion resistance of Al2O3/ZrO2 coatings formed on zirconium by micro-arc oxidation. Appl. Surf. Sci., 256 (21), 6359–6366.

26 Dehnavi, V. 2014. Surface Modification of Aluminum Alloys by Plasma Electrolytic Oxidation. The University of Western Ontario Supervisor.

27 Hussein, R. O., Nie, X., & Northwood, D. O. 2010. Influence of process parameters on electrolytic plasma discharging behaviour and aluminum oxide coating microstructure. Surf. Coatings Technol., 205 (6), 1659–1667.

28 Wei, K., Chen, L., Qu, Y., Yu, J., & Jin, X. 2019. Tribological properties of microarc oxidation coatings on Zirlo alloy. Surf. Eng., 35 (8), 692–700.

29 Mohedano, M., Blawert, C., & M. L. Zheludkevich. 2015. Silicate-based Plasma Electrolytic Oxidation (PEO) coatings with incorporated CeO2 particles on AM50 magnesium alloy. Materials & Design, 86, 735-744.

30 Aliofkhazraei, M., Gharabagh, R. S., Teimouri, M., Ahmadzadeh, M., Darband, G. B., & Hasannejad, H. 2016. Ceria embedded nanocomposite coating fabricated by plasma electrolytic oxidation on titanium. J. Alloys Compd., 685, 376–383.

31 Zou, Z., Xue, W., Jia, X., Du, J., Wang, R., & Weng, L. 2013. Effect of voltage on properties of microarc oxidation films prepared in phosphate electrolyte on Zr-1Nb alloy. Surf. Coatings Technol., 222, 62–67.

32 Sowa, M., & Simka, W. 2018. Effect of DC Plasma Electrolytic Oxidation on Surface Characteristics and Corrosion Resistance, Materials (Basel), 11, 723.

33 Yan, Y., Han, Y., & Huang, J. 2008. Formation of Al 2 O 3 – ZrO 2 composite coating on zirconium by micro-arc oxidation. Scr. Mater,59, 203–206.

34 Cengiz, S., & Gencer, Y. 2014. The characterization of the oxide based coating synthesized on pure zirconium by plasma electrolytic oxidation. Surf. Coat. Technol., 242, 132–140.

35 Lu, S., Lou, B., Yang, Y., Wu, P., Chung, R., & Lee, J. 2015. Effects of duty cycle and electrolyte concentration on the microstructure and biocompatibility of plasma electrolytic oxidation treatment on zirconium metal. Thin Solid Films, 596, 87–93.

36 Xue, W., Zhu, Q., Jin, Q., & Hua, M. 2010. Characterization of ceramic coatings fabricated on zirconium alloy by plasma electrolytic oxidation in silicate electrolyte. Mater. Chem. Phys., 120, 2–3, 656–660.

37 Wang, Y.M., Feng, W., Xing, Y.R., Ge, Y.L., & Guo, L.X. 2018. Degradation and structure evolution in corrosive LiOH solution of microarc oxidation coated Zircaloy-4 alloy in silicate and phosphate electrolytes. Appl. Surf. Sci., 431, 2–12.

38 Malinovschi, V., Marin, A., Negrea, D., Andrei, V., & Coaca, E. 2016. Tetragonal ZrO2 phase stabilization in coating layers prepared on Zr-2.5%Nb alloy during plasma electrolytic oxidation in sodium aluminate electrolytes. Mater. Res. Express, 4, 11–14.

39 Sandhyarani, M., Ashfaq, M., Arunnellaiappan, T., Selvan, M. P., Subramanian, S., & Rameshbabu, N. 2015. Effect of electrical parameters on morphology and in-vitro corrosion resistance of plasma electrolytic oxidized films formed on zirconium. Surf. Coatings Technol., 269 (1), 286–294.

40 Li, N., Yuan, K., Song, Y., Cao, J., LijianXu, & Xu, J. 2020. Plasma electrolytic oxidation of Zircaloy-2 alloy in potassium hydroxide/sodium silicate electrolytes: The effect of silicate concentration. Boletín la Soc. Española Cerámica y Vidr.

41 Aliofkhazraei, M., Gharabagh, R. S., Teimouri, M., Ahmadzadeh, M., Darband, G. B., & Hasannejad, H. 2016. Ceria embedded nanocomposite coating fabricated by plasma electrolytic oxidation on titanium. J. Alloys Compd., 685, 376–383.

42 Apelfeld, A. V., Ashmarin, A. A., Borisov, A. M., Vinogradov, A. V., Savushkina, S. V., & Shmytkova, E. A. 2016. Formation of zirconia tetragonal phase by plasma electrolytic oxidation of zirconium alloy in electrolyte comprising additives of yttria nanopowder. Surf. Coat. Technol., 328, 513-517.

43 Sandhyarani, M., Rameshbabu, N., Venkateswarlu, K., Sreekanth, D., & Subrahmanyam, C. 2013. Surface morphology , corrosion resistance and in vitro bioactivity of P containing ZrO 2 films formed on Zr by plasma electrolytic oxidation, J. Alloys Compd., 553, 324–332.

44 Sukumaran, A., Sampatirao, H., Balasubramanian, R., Parfenov, E., Mukaeva, V., & Nagumothu, R. 2018. Formation of ZrO2–SiC Composite Coating on Zirconium by Plasma Electrolytic Oxidation in Different Electrolyte Systems Comprising of SiC Nanoparticles. Trans. Indian Inst. Met., 71 (7), 1699–1713.

45 Kelly, J. R., & Denry, I. 2008. Stabilized zirconia as a structural ceramic: An overview. Dent. Mater., 24 (3), 289–298.

46 Fabris, S., Paxton, A. T., & Finnis, M. W. 2002. A stabilization mechanism of zirconia based on oxygen vacancies only. Acta Mater., 50 (20), 5171–5178.

47 Setoyama, D., & Yamanaka, S. 2004. Phase diagram of Zr-O-H ternary system. J. Alloys Compd., 370 (1–2), 144–148.

48 Xue, W., Wang, C., Tian, H., & Lai, Y. 2007. Corrosion behaviors and galvanic studies of microarc oxidation films on Al-Zn-Mg-Cu alloy. Surf. Coatings Technol., 201, 21 SPEC. ISS., 8695–8701.

49 Li, J., Bai, X., Zhang, D., & Li, H. 2006. Characterization and structure study of the anodic oxide film on Zircaloy-4 synthesized using NaOH electrolytes at room temperature. Appl. Surf. Sci., 252, 7436–7441.

50 Wang, S., Liu, X., Yin, X., & Du, N. 2019. Influence of electrolyte components on the microstructure and growth mechanism of plasma electrolytic oxidation coatings on 1060 aluminum alloy. Surf. Coat. Technol., 125214.

51 Cheng, Y., Matykina, E., Arrabal, R., Skeldon, P., & Thompson, G. E. 2012. Plasma electrolytic oxidation and corrosion protection of Zircaloy-4. Surf. Coat. Technol., 206 (14), 3230–3239.

Refbacks

  • There are currently no refbacks.