Sintesis dan Karakterisasi MgB2 dengan Penambahan Nano-SiC melalui Metode Reaksi Padat

Sigit Dwi Yudanto, Lalu Arif Rahman Hakim, Muhammad Emir Hanif Rasyadi, Agung Imaduddin, Andika Widya Pramono

Abstract

Sintesis material MgB2 dengan penambahan nano-SiC telah kami lakukan menggunakan metode reaksi padat. Evaluasi penambahan nano-SiC terhadap struktur kristal dan suhu kritis MgB2 dilakukan melalui pengujian difraksi sinar-X dan cryogenic magnetometer. MgB2+x wt.% nano-SiC dengan x=0, 5, 10, dan 15 dipersiapkan dengan penggerusan manual dan disintering pada suhu 800°C selama 2 jam. Berdasarkan analisis difraksi sinar-X, penambahan nano-SiC menyebabkan penurunan nilai konstanta kisi-a dari 3,0848 Å menjadi 3,0792 Å. Distorsi pada konstanta kisi-a merupakan dampak dari karbon yang mensubstitusi boron. Hasil uji resistivitas menunjukkan bahwa penambahan nano-SiC menurunkan nilai Tc-zero dari material MgB2.

Keywords

MgB2; reaksi padat; nano-SiC; kisi, Tc-zero

Full Text:

PDF

References

1 Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., and Akimitsu, J. 2001. Superconductivity at 39 K in magnesium diboride. Letters to Nature, 410, 63–64.

2 Dou, S.X., Soltanian, S., Horvat, J., Wang, X.L., Zhou, S.H., Ionescu, M., Liu, H.K., Munroe, P., Tomsic, M. 2002. Enhancement of the critical current density and flux pinning of MgB2 superconductor by nanoparticle SiC doping. Applied Physics Letters, 81 (18), 3419–3421.

3 Imaduddin, A., Yudanto, S.D., Rasyadi, M.E.H., Nakanishi, Y., and Yoshizawa, M., 2019. Possibility of the Higher Critical Temperature on MgB2 Superconductor Synthesized by Powder-In-Sealed-Tube Method. Journal of Low Temperature Physics, 195, 460–473.

4 Larson, A.C., and Von Dreele, R.B. 2004. General Structure Analysis System (GSAS). 86–748.

5 Arvapalli, S.S., Muralidhar, M., and Murakami, M. 2019. High-Performance Bulk MgB2 Superconductor Using Amorphous Nano-boron. Journal of Superconductivity and Novel Magnetism, 32, 1891–1895.

6 Soltanian, S., Wang, X., Horvat, J., Qin, M., Liu, H., Munroe, P.R., and Dou, S.X. 2003. Effect of Grain Size and Doping Level of SiC on the Superconductivity and Critical Current Density in MgB2 Superconductor. IEEE Transactions on Applied Superconductivity, 13 (2), 3273–3276.

7 Gabovich, A. 2015. Superconductors - New Developments. InTech. Croatia.

8 Vinod, K., Varghese, N., Kumar, R. G. A., Syamaprasad, U., and Roy, S.B. 2008. Influence of Mg particle size on the reactivity and superconducting properties of in situ MgB2. Journal of Alloys and Compounds, 464 (1), 33–37.

9 Varghese, N., Vinod, K., Syamaprasad, U., and Roy, S.B. 2009. Doping effect of nano-SiC on structural and superconducting properties of MgB2 bulks prepared by PIST method in air. Journal of Alloys and Compounds, 484 (1-2), 734–738.

10 Wang, D., Ma, Y., Yu, Z., Gao, Z., Zhang, X., Watanabe, K., and Mossang, E. 2007. Strong influence of precursor powder on the critical current density of Fe- sheathed MgB2 tapes. Superconductor Science and Technology, 20, 574–578.

11 Xu, X., Qin, M. J., Konstantinov, K., Santos, D.I.D., Yeoh, W. K., Kim, J.H., and Dou, S.X. 2006. Effect of boron powder purity on superconducting properties of MgB2. Superconductor Science and Technology, 19, 466–469.

12 Vajpayee, A., Jha, R., Srivastava, A. K., Kishan, H., Tropeano, M., Ferdeghini, C., and Awana, V.P.S. 2011. The effect of synthesis temperature on the superconducting properties of n-SiC added bulk MgB2 superconductor. Superconductor Science and Technology, 24, 1–11.

13 Guo, Z., Suo, H., Sandu, V., and Aldica, G. 2014. Experimental study on phase formation of SiC doped MgB2: Processing of Mg-B-SiC powders by spark plasma sintering. Materials Research Innovations, 18 (6), 407–411.

14 Nath, D., Singh, F., and Das, R. 2020. X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles-a comparative study. Materials Chemistry and Physics, 239, 122021.

15 Zak, A.K., Majid, W.H.A., Abrishami, M.E., and Youse, R. 2011. X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods. Solid State Sciences, 13, 251–256.

16 Cai, Q., Ma, Z., Liu, Y., Guo, Q., Xiong, J., Li, H., and Qin, F. 2016. Evaluation of quenching-induced lattice strain and superconducting properties in un-doped and glycine-doped MgB2 bulks. Journal of Materials Science: Materials in Electronics, 27, 9431–9436.

17 Shekhar, C., Giri, R., and Srivastava, O. N. 2007. Enhancement of flux pinning and high critical current density in graphite doped MgB2 superconductor. Journal of Applied Physics, 102, 1–5.

18 Yudanto, S.D., Dewi, Y.P., Sebayang, P., Chandra, S.A., Imaduddin, A., Kurniawan, B., and Manaf, A. 2020. Influence of CNTs addition on structural and superconducting properties of mechanically alloyed MgB2. Journal of Metals, Materials and Minerals, 30 (3), 9–14.

Refbacks

  • There are currently no refbacks.