Modification of Materials and Thickness Layer of Radial Piercing Beamport (RPB) Reflector on Kartini Reactor for Boron Neutron Capture Therapy (BNCT)

Octaviana Erawati F, Riyatun R, Suharyana S

Abstract

Modification of materials and thicknesses reflector RPB of Kartini reactor has been done to support cancer therapy with BNCT method. Modifications have been investigated by computer simulation method based on software MCNP5. Neutron beam for BNCT must be fulfill the criteria recommended by International Atomic Energy Agency (IAEA), two of which are  n.cm-2.s-1 and  . Before the modification of the neutron beam done, the measurements in the end of the RPB indicate that  n.cm-2.s-1 and  . These conditions were not fulfilling the requirements of the IAEA, so that the modification of the reflector material and thickness layer of RPB should be done. Those modifications were done by varying the materials PbF2, Pb-nat, 209Bi, Ni-nat (95%) and Fe-nat. The simulation result showed if the material Ni-nat (95%) on the thickness 1.5 cm was use as a coating material reflector optimally. The results after the modification showed that  increased 7,54% with the increase amounted to n.cm-2.s-1.  decrease 21,45%, then decreasing the value of       became 1,70.  After the modification the results has not yet fulfill the criteria of the IAEA. Because of the reflector was not the only guide neutron beam. Moderator and filter have not been optimized to deliver results for files that match the criteria of the IAEA for BNCT. Therefore, in future studies modified with the addition of a neutron moderator and also filter is expected to help increasing the quantity of  and decreasing of .

Full Text:

PDF

References

UK, Cancer Research. (2014). What is cancer. Dipetik Oktober 2014, dari Cancer Research UK: http://www.cancerresearchhuk.org

Ferlay, J., Soerjomataram, I., Dikshit, R., Mathers, C., Rebelo, M., Parkin, D., et al. (2014). Cancer Incidence and Mortality Worldwie. International Journal of Cancer.

Ferlay, J., Soerjomataram, I., Ervik, M., Dikshit, R., Eser, S., Mather, C., et al. (2012). Cancer Incidence and Mortality Worldwide:IARC Cancer Base No.11. IARC.

Lyon. (2013). International Agency for Research on Cancer. Dipetik Desember 2014, dari GLOBOCAN: http://globocan.iarc.fr

Susworo, Hutagalung, E. U., Diligo, I. H., & Kamal, A. F. (2013, Mei). Dasar-Dasar Radiasi: Mekanisme Radiasi dan Pengaruhnya terhadap DNA serta Jaringan Tulang. Indonesian Journal of Cancer, 7, 73-78.

Susworo. (2007). Radioterapi dasar-dasar radioterapi tata laksana radioterapi. Jakarta: UI-Press.

Lusiyanti, Y., & Syaifudin, M. (2008). Penerapan efek interaksi radiasi dengan. JFN, 2, 1-12.

Tahara, Y., Oda, Y., Shiraki, T., Yokobori, H., & Nakamura, T. (2006). Engineering Design of a Spallation Reactio-Based Neutron Generator for Boron Neutron Capture Therapy. Journal of Nuclear Science and Thecnology, 43, 9-19.

IAEA. (2001). CURRENT STATUS OF NEUTRON CAPTURE THERAPY. Viena: IAEA,ISSN 1011–4289.

Tetsuya, M., & Tetsuo, M. (2011). Progress in nuclear science and thecnology. Study on microdosimetry for boron neutron capture therapy. 2-242.

Wolfgang, A., Sauerwein, Pierre, M., & Andre, W. (2013). Neutron capture therapy. Drugs for BNCT. 117-161.

Whittmore, W. (1992). A Compact TRIGA reactor for Boron neutron capture theraphy. Progress in Neutron Capture Therapy for Cancer (hal. 57-62). New York: Plenum Press.

Stephen, E. B. (1997). Epithermal neutron beam disign at the Oregon State University TRIGA MARK-II reactor (OSTR) Based on onte Crlo Methods. Kanokrat Tiyapun.

Kasesaz, Y., Khalafi, H., & Rahmani, F. (2014). Design of an epithermal neutron beam for BNCT in thermal column of Tehran research reactor. Annals of Nuclear Energy, Elsevier, 234-238.

Shaaban, I., & Albarhoum, M. (2015). Design calculation of an epithermal neutronic beam for BNCT neutronic beam for BNCT. Progress in Nuclear Energy, Elsevier, 297-302.

X-5 Monte Carlo Team. (1987). MCNP-A general Monte Carlo N-Particle Transport Code Version 5 Volume 1;Overview and Theory. Mexico: Los Alamos National Laboratory

Muhammad, I. (2013). Perancangan kolimator di beamport tembus reaktor Kartini untuk boron neutron capture therapi. Skripsi. Yogyakarta: Universitas Gajah Mada.

Wahyuningsih, D. (2014). Optimasi Desain Kolimator Untuk Uji In Vivo Boron Neutron Capture Therapy (BNCT) pada Beamport Tembus Reaktor Kartini menggunaka Simulasi MCNP5.Thesis. Yogyakarta: Universitas Gajah Mada.

Rohman,Budi. (2009). Koefisien Reaktivitas Temperature bahan Bakar Reaktor Krtini. Jurnal Sains dan Tekhnologi Nuklir Indonesia,X,2,59-70

John, R. L., & Anthony, J. B. (t.thn.). Introduction to Nuclear Engineering. New Jersey: Pentice Hall.

PSTA. (2005). Laporan Analisis Keselamatan Reaktor Kartini. Yogyakarta: PSTA-BATAN

Widarto, Mulyadi,E., Purwadi, I., (2014). Kajian Awal Pengembangan Fasilitas Uji In Vitro/In Vivo Metode Boron Neutron Capture Cancer Therapy Dengan Memanfaatkan Potensi Alternatif Berbagai Fasilitas Iradiasi untuk Pendayagunaan Reaktor Triga Kartini. Laporan Penelitian, Lembaga Ilmu Pengetahuan Indonesia, Jakarta.

Soppera, N., Dupont, E., & Bossant, M. (2012). JANIS BOOK of Neutron-induced cross section. OECD NEA Data Bank.

Yusman, A. W., & Widyatmojo, Y. (2011). Penentuan karakteristik rapat daya reaktor Kartini. Prosiding seinar nasional ke-17 teknologi keselamatan PLTN serta fasilitas nuklir (hal. 195-205). Yogyakarta: PSTA_BATAN.

Refbacks

  • There are currently no refbacks.