Problem Pengolahan Data Gaya Berat Mikro antar Waktu

Supriyadi S

Abstract

At time lapse microgravity survey will be got data in place for difference period. The Anomaly caused by subsidence and density change under surface which related to groundwater level change. This matter become problem when will take one of the anomaly sources to processed is furthermore. Reduction one of anomaly source cannot be done direct but must be done with filtering process. Process filtering done by using FFT (Fast Fourier Transform), its principal is to move data from time domain to frequency domain. At frequency domain this is mathematics process conducted. On subsidence case study in Semarang by using this technique indicate that subsidence value from time lapse micro gravity survey have tendency is equal to result from geodesy survey.

Full Text:

PDF

References

Allis, R.G. dan Hunt, T.M. 1986. Analisis of Exploration Induced Gravity Changes at Wairakei Geothermal Field. Geophysics, Vol. 51, pp. 1647-1660.

Andres, R.B.S. dan Pedersen, J.R. 1993. Monitoring the Bulalo Geothermal Reservoir, Philippines, using Precision Gravity Data. Geothermics, Vol. 22 No. 5/6, pp. 395 - 402.

Kamah, M.Y., Negara, C., Pulungan, I., dan Budiardjo. 2001. Application of Microgravity Method on Monitoring Geothermal Reservoir Changes during Production of Steam in The Kamojang Geothermal Field, West Java Indonesia, Proceedings 5th SEGJ International Symposium – Imaging Technology, Tokyo, Japan.

Galderen, V.M., Haagmans, R., dan Bilker, M. 1999. Gravity Changes and Natural Gas Extraction in Groningen. Geophysical Prospecting, Vol. 47, pp. 979-993.

Eiken, O., Zumberge, M., dan Sasagawa, G. 2000. Gravity Monitoring of Offshore Gas Reservoir, SEG Expanded Abstract, Vol. 19, pp. 431.

Akasaka, C., dan Nakanishi, S. 2000. An Evaluation of The Background Noise for Microgravity Monitoring in The Oguni Field, Proceedings of 25th Stanford Geothermal Workshop, Japan.

Mariita, N.O. 2000. Application of Precision Gravity Measueremnt to Reservoir Monitoring of Olkaria Geothermal Field, Kenya, Proceedings World Geothermal Congress 2000, Kyushu – Tohoku, Japan.

Nishijima, J., Fujimitsu, Y., Ehara, S., dan Yamauchi. 2005. Microgravity monitoring and repeated GPS survey at Hatchobaru geothermal field, Proceeding World Geothermal Congress, Central Kyushu, Japan

Eiken O., Zumberge. 2005. Gravimetric monitoring gas production from the Troll field, Proceedings SEG International exposition and 74 th annual meeting, Denver, Colorado.

Jacob T., Chery J., Bayer R., Moigne N.L., Boy J.P. 2009. Time lapse surface to depth gravity measurements on a karst system reveal the dominant role of the epikarst as a

water storage entity, Geophysics Journal International, pp. 1-14.

Leiriao S. 2007. Hydrological model calibration using ground base and space borne time lapse gravity surveys, Thesis, Technical University of Denmark.

Krahenbuhl R.A., Li Y. 2012. Time lapse gravity: A numerical demonstation using robust inversion and joint interpretation of 4D surface and borehole data, Vol.77, No. 2, pp. 33-43.

Telford, W.M., Geldart, L.P., dan Sheriff, R.P. 1990. Applied Geophysics 2nd ed, Cambridge University Press

Sarkowi, M. 2007. Gaya berat mikro Antar Waktu untuk Analisa Perubahan Kedalaman Muka Air Tanah (Studi Kasus Dataran Aluvial Semarang). disertasi, Institut Teknologi Bandung.

Kadir, W.G.A., Santoso, D., dan Sarkowi, M. 2004. Time Lapse Vertical Gradient Microgravity Measurement for Subsurface Mass Change and Vertical Ground Movement (Subsidence) Identification, Case Study : Semarang alluvial plain, central Java, Indonesia, Proceedings of the 7th SEGJ International Symposium, Sendai–Japan, pp. 421-426.

Muhrozi, Pranoto, S., dan Nasrullah. 1996. Studi Penentuan Penurunan Permukaan Tanah di Semarang Bagian Bawah. Laporan akhir Penelitian. Fakultas Teknik Sipil Universitas Diponegoro.

Marsudi. 2000. Prediksi Laju Amblesan Tanah di Dataran Alluvial Semarang – Jawa Tengah, Disertasi Program Doktor, Institut Teknologi Bandung.

Refbacks

  • There are currently no refbacks.