Sea Wave Height Monitoring Prototype as an Early Warning System for Tidal Flood Disaster

Samsul Muhayadi, I Wayan Sudiarta, Eko Pradjoko

Abstract

Indonesia is an archipelagic country located between the Indian Ocean to the south and the Pacific Ocean to the north. As a consequence of this, during the rainy and transitional seasons, extreme weather occurs, especially in the southern coastal areas. According to data from the National Disaster Management Agency, in the last six years, more than 200 tidal waves and abrasion have hit the coastal areas of Indonesia. These conditions can lead to various disasters, particularly tidal flooding. Therefore, the development and design a wave height monitoring device as an early warning system for tidal flooding is necessary. This device is expected to play a vital role in disaster mitigation, because it can provide the information about the potential for tidal flooding based on the changes in wave height. The design of this device uses the LPD3806 encoder as a sensor and the nRF24L01 to send information to the monitoring station. Furthermore, running tests has been conducted and based on the results of the maximum distance test, information delivery can reach 800 meters in an open area with a maximum delay of 2 seconds. For sensor accuracy, a value of  99.7% was obtained, indicating the sensor has a small measurement error rate. On top of that, during field tests, the device demonstrated durability under bad weather, with no loss of data sent. This shows that this device can operate reliably under extreme weather environments.

Keywords

disaster mitigation; tidal flooding; early warning system

Full Text:

PDF

References

1 BNPB. (2023). Risiko Bencana Indonesia: Memahami Risiko Sistemik di Indonesia. Jakarta: Pusat Data, Informasi, dan Komunikasi Kebencanaan BNPB.

2 Pinet, P. R. (2021). Invitation to Oceanography. Burlington: Jones & Bartlett Learning.

3 Craghan, M. (2003). Physical Geography A Self-Teaching Guide. Canada: John Wiley & Sons Inc.

4 Syafitri, A. W., & Rochani, A. (2021). Analisis Penyebab Banjir Rob di Kawasan Pesisir Studi Kasus: Jakarta Utara, Semarang Timur, Kabupaten Brebes, Pekalongan. Jurnal Kajian Ruang, 1(1), 16–28. https://dx.doi.org/10.30659/jkr.v1i1.19975

5 Muryani, C., Nugraha, S., & Prihadi, S. (2017). Impact of Coastal Erosion and Tidal Flood to Land Loss at Sriwulan Village, Sayung, Demak, Central Java Province. 1st International Conference on Geography and Education (ICGE 2016), 53–56. Malang: Atlantis Press.

6 Höffken, J., Vafeidis, A. T., MacPherson, L. R., & Dangendorf, S. (2020). Effects of the Temporal Variability of Storm Surges on Coastal Flooding. Frontiers in Marine Science, 7, 1–14. https://doi.org/10.3389/fmars.2020.00098

7 Tiatama, S. H., Atmodjo, W., & Widiaratih, R. (2024). Analisis Keterkaitan Fenomena Supermoon Terhadap Komponen Pasang Surut Di Perairan Semarang, Jawa Tengah. Indonesian Journal of Oceanography, 6(2), 114–120. https://doi.org/10.14710/ijoce.v6i2.19036

8 Fajrin, A. R. M., Hayati, A., & Faqih, M. (2020). The Spatial Characteristics of Tidal Flood Vulnerability and Adaptation Strategy in Tambak Lorok Kampung Settlement. The 6th International Seminar on Science and Technology, 363–371. Surabaya: Institut Sepuluh Nopember. http://dx.doi.org/10.12962%2Fj23546026.y2020i6.11124

9 Musarofa, Siswanti, Y. D., & A-Rosyid, L. M. (2024). Analisis Pengaruh Banjir Rob Terhadap Kualitas Air Tanah di Kawasan Pesisir Selatan Puger Kabupaten Jember. Journal of Mechanical Engineering, 1(1), 52–59. https://doi.org/10.47134/jme.v1i1.2190

10 Triana, Y. T., & Hidayah, Z. (2020). Kajian Potensi Daerah Rawan Banjir Rob dan Adaptasi Masyarakat di Wilayah Pesisir Utara Surabaya. Juvenil:Jurnal Ilmiah Kelautan Dan Perikanan, 1(1), 141–150. https://doi.org/10.21107/juvenil.v1i1.6961

11 Pratama, M. B. (2019). Tidal Flood in Pekalongan: Utilizing and Operating Open Resources for Modeling. IOP Conference Series: Materials Science and Engineering, 676(1), 1–11. IOP Publishing Ltd. https://doi.org/10.1088/1757-899X/676/1/012029

12 Afifah, A. S., Sari, M. M., Suhardono, S., & Suryawan, I. W. K. (2023). Inisiatif Penanaman Mangrove sebagai Upaya Mitigasi Banjir Rob di Kabupaten Kendal : Studi Literatur. Jurnal Serambi Engineering, 8(4), 7249–7255. https://doi.org/10.59431/ajad.v3i3.221

13 Prawira, M. P., & Pamungkas, A. (2014). Mitigasi Kawasan Rawan Banjir Rob di Kawasan Pantai Utara Surabaya. Jurnal Teknik Pomits, 3(2), 160–165.

14 Pasi, A. A., & Bhave, U. (2015). Flood Detection System Using Wireless Sensor Network. International Journal of Advanced Research in Computer Science and Software Engineering, 5(2), 386–389.

15 Undang-Undang Republik Indonesia Nomor 24 Tahun 2007 tentang Penanggulangan Bencana. Lembaran Negara Republik Indonesia Tahun 2007 Nomor 66 Tambahan Lembaran Negara Republik Indonesia Nomor 4723.

16 Sakya, A. E. (2018). Reviewing Global Development of Multi-Hazard Early Warning System With The Perspective of Its Development in Indonesia. MATEC Web of Conferences, 229, 1–7. EDP Sciences. https://doi.org/10.1051/matecconf/201822902020

17 Estu, D. S., Yantidewi, M., Rusdi, B. M., Adikuasa, M. B., & Khoiro, M. (2023). Alat Monitoring Ketinggian Air Laut Berbasis IoT dengan Nodemcu ESP32 dan HC-SR04. Jurnal Kolaboratif Sains, 6(7), 585–597. https://doi.org/10.56338/jks.v6i7.3782

18 Hassan, W. H. W., Jidin, A. Z., Aziz, S. A. C., & Rahim, N. (2019). Flood Disaster Indicator of Water Level Monitoring System. International Journal of Electrical and Computer Engineering, 9(3), 1694–1699. https://doi.org/10.11591/ijece.v9i3.pp1694-1699

19 Suharyo, O. S. (2018). Rancang Bangun Alat Pengukur Gelombang Permukaan Laut Presisi Tinggi (A Prototype Design). Applied Technology and Computing Science Journal, 1(1), 18–29. https://doi.org/10.33086/atcsj.v1i1.6

20 Damayanti, M. A., Wahyuningtyas, S. H., Balistyadhana, D. Z., Hapsari, A. D., Shammah, A. El, Yusa, N. C. A., … Isworo, S. (2024). The IoT-Based Early Warning System for Detecting High Tide Floods (ROB-EWS) in Tambak Lorok, Semarang Indonesia. Journal of Geography, Environment and Earth Science International, 28(10), 13–24. https://doi.org/10.9734/jgeesi/2024/v28i10822

21 Panda, K. G., Agrawal, D., Nshimiyimana, A., & Hossain, A. (2016). Effects of Environment on Accuracy of Ultrasonic Sensor Operates in Millimetre Range. Perspectives in Science, 8, 574–576. https://doi.org/10.1016/j.pisc.2016.06.024

22 Jones, L. D., & Chin, A. F. (1991). Electronics Instruments and Measurements. New Jersey: Practice-Hall.

23 Susanti, A. F. S., Putranto, R. T., Rahmadani, M. A., Mustaqim, I., Saliyo, A. D. S., Sazidah, H., … Trianto, A. (2024). Instrumentation for Monitoring and Early Warning of Tidal Flood Using ESP32S2 Microcontroller and A01NYUB Ultrasonic Sensor in Tambakrejo, Semarang. IOP Conference Series: Earth and Environmental Science, 1350(1). Institute of Physics. https://doi.org/10.1088/1755-1315/1350/1/012046

24 Budimir, M., Donovan, A., Brown, S., Shakya, P., Gautam, D., Uprety, M., … Dugar, S. (2020). Communicating Complex Forecasts: An Analysis of The Approach in Nepal’s Flood Early Warning System. Geoscience Communication, 3(1), 49–70. https://doi.org/10.5194/gc-3-49-2020

Refbacks

  • There are currently no refbacks.