Propose Model of Gathering System Optimization on Unit-G4 Geothermal Power Plant

Udi Harmoko, Sorja Koesuma, Joko Windarto, Asep Yusup Burhanudin

Abstract

The nature of geothermal heat is a decrease in pressure, temperature, and steam flow. Based on Exaquantum observation data, one of the geothermal power plants in West Java experienced a reduced steam supply for the Geothermal Power plant (GPP) Unit-G4, which decreased production capacity. This study aims to analyze the existing conditions and make models and simulations on the optimum Steam Gathering System (SGS) at GPP Unit-G4.  The stages in this research are modelling using Aspen Hysys software on the existing conditions of SGS as a basis for finding alternative optimum solutions. The second stage was to design a model and simulation by interconnecting the K-21X production well with the PL-X05 production.  Furthermore, the simulation of adding steam by 25%, 50%, 75%, and 100% in the interconnection process was carried out. Existing steam gathering modelling and simulation results show that the deviation between actual steam field parameters is ≤ 2% (can be used as a simulation baseline). The modelling and simulation results of adding steam from the K-21X production well to the PL-X05 production well are optimum at 100% and 75% steam addition. From the simulation, adding 25% and 50% steam cannot be applied because the net power does not reach the unit rate capacity of 60.856 MW.

Keywords

Geothermal; Pipeline; Simulation and Modelling; Steam Gathering System.

Full Text:

PDF

References

1 Sahdarani, D.N., Ponka, M.A., & Oktaviani, A.D. 2020. Geothermal Energy as An Alternative Source for Indonesia’s Energy Security: The Prospect and Challenges, Journal of Strategic and Global Studies, 3(1).

2 Hilah, A.R. and Subekti, H. 2022. Analisa Penurunan Laju Produksi Pada Sumur X PLTP Ulumbu. SNTEM, 2: 11-18.

3 Febriza, M.J., Salim, S., & Munandar, A. 2019. Perjanjian Jual Beli Tenaga Listrik Antara PT. PLN (Persero) dengan Badan Usaha Swasta Berdasarkan Undang-Undang Nomor 30 Tahun 2009 Tentang Ketenagalistrikan. Media Bina Ilmiah, 13(10), 1-16

4 Yamin, W., Choiri, M., Goesman, A., & Nurfahmiawati, N. 2015 Darajat Unit II/III Interface Debottlenecking Project. Proceedings World Geothermal Congress 2015

5 Ballzus, C., Karlsson, T., & Maack, R., 2022. Design of geothermal steam supply systems in Iceland. Geothermics, 21(5), 835–845.

6 Nugroho, A., S. 2020. The Modeling of Gathering System Design in Ulumbu Geothermal Field Development to Optimize Production Capacity. Doctoral Thesis, UPN “Veteran” Yogyakarta.

7 Izuwa, N. C., Okereke, N. U., Nwanwe, O. I., Ejiga, E. G., Ekueme, S. T., Chikwe, A. O., & Ohaegbulam, C. M. 2024. Modeling of wellbore heat transfer in geothermal production well. IOP Conference Series.Earth and Environmental Science, 1342(1), 012041

8 Sofyan, A., Aka, H.S. & Ermanda, M.B. 2020. Redesign Of Well Pad" X" Geothermal Separator with Demister Pad to Increase Separator Efficiency to Get Maximum Steam and Brine Separation in the Field" Y. In Der Digital German Geothermie Kongress 2020, 1–15.

9 Sopurta, A. Siregar, A. & Ekawati, E. 2014. Perancangan Sistem Simulasi HYSYS & Iintegrasi dengan Programmable Logic Controller-Human Machine Interface: Studi Kasus pada Plant Kolom Distilasi Etanol-Air. Jurnal Otomasi, Kontrol, dan Instrumentasi, 06(1), 1-10

10 Hidayati, N. & Ekayuliana, A. 2023. Analysis of the Effects of CO2, H2S Composition, and Temperature on Steam Towards Corrosion Rate in Geothermal Power Plants. J. Energy, Mater. Instrum. Technol, 4(4), 63–168.

11 Joao, I. M. and Silva, J. M. 2016. Designing experiments with Aspen HYSYS simulation to improve distillation systems: Insights from a chemical engineering course, 2nd International Conference of the Portuguese Society for Engineering Education (CISPEE), Vila Real, Portugal. 1-10.

12 Babatunde, D. E., Anozie, A. N., Omoleye, J. A., & Odejobi, O. J. 2021. Performance evaluation of a major thermal power plant in Nigeria. IOP Conference Series.Earth and Environmental Science, 655(1)

13 Rudiyanto, B., IbnuAtho, B.I., Pambudi, N.A., Adiprana, C.C., Muhammad, R.I., Saw, H., & Renanto, L. H. 2017. Preliminary analysis of dry-steam geothermal power plant by employing exergy assessment: Case study in Kamojang geothermal power plant, Indonesia. Case Studies in Thermal Engineering, 10, 292–301.

14 Rudiyanto, B., Bahthiyar, M.A., Pambudi, N.A. Widjonarko, & Hijriawan, M. 2021. An update of second law analysis and optimization of a single-flash geothermal power plant in Dieng, Indonesia. Geothermics, 96, 102212.

15 Pambudi, N.A. Itoi, R., Jalilinasrabady, S., & Jaelani. 2013. Exergy analysis and optimization of Dieng single-flash geothermal power plant. Energy Convers. Manag, 78, 405–411.

16 Moran, M.J. & Shapiro. N.H. 2006. Fundamentals of Engineering Thermodynamics. John Wiley & Sons. Inc

17 LaPlante, K. R., P.E. 2023. Steam system pipe sizing for industrial facilities. ASHRAE Journal, 65(6), 12-16,18-21.

18 Toledo-Paz, L.M., Colorado-Garrido, D., Conde-Gutiérrez, R.A., Herrera-Romero, J.V., & Escalante-Soberanis, M.A. 2024. Improvement of a double flash cycle using a heat exchanger with liquid cooling and liquid splitting technology for a geothermal power plant. Energy, 304, 132155.

19 Wei, J., Ouyang, C., Shan, X., Gao, Q., Zheng, K., & Luo, W. 2023. Advances in fluid mechanics: Computing and mathematical models, turbulence, fluid theory applications. Journal of Physics: Conference Series, 2599(1), 012042.

20 Yuan, W., Chen, K., Huang, Y., & Yuan-wei Lyu. 2024. Numerical Investigation of Pressure Measurement by Pitot Tubes in Micro-Scale Taylor Couette Flow with Hyper Rotational Speed and Its Correction. Journal of Physics: Conference Series, 2913(1), 012008

21 Bandara, Abeyweera,R., and Senanayake. 2015. Minimizing Energy Loss by Optimizing Pipe Diameter and Insulation Thickness in Steam Distribution Pipelines. Slema Journal 18 (1), 19-27

22 Jonsson, M.T. & Magnusdottir, L. 2017. Minimizing Visual Effects and Optimizing Routes and Locations for Geothermal Steam Gathering System. In Pressure Vessels and Piping Conference, American Society of Mechanical Engineers, V03AT03A056.

23 Zhou, Y., Lagrée, P., Popinet, S., Ruyer, P., & Aussillous, P. 2017. Experiments on, and discrete and continuum simulations of, the discharge of granular media from silos with a lateral orifice. Journal of Fluid Mechanics, 829, 459-485.

24 Guo, M., Huang, Z., Jiang, K., Shen, Y., & Wang, W. 2024. Research on the hydraulic loss in the side inlet and outlet of a pumped storage power station. Journal of Physics: Conference Series, 2854(1), 012078.

25 Lu, J., Zeng, Y., Liu, X., & Yu, Z. 2024. Numerical simulation analysis and experimental verification of airflow measurement in large-diameter S-shaped pipe. Journal of Physics: Conference Series, 2752(1), 012220.

26 Gerasimov, A., Alexandrov, I., & Grigoriev, B. 2016. Modeling and calculation of thermodynamic properties and phase equilibria of oil and gas condensate fractions based on two generalized multiparameter equations of state. Fluid Phase Equilib, 418, 04–223.

Refbacks

  • There are currently no refbacks.