Pendekatan Hybrid: Naïve Bayes dan Decision Tree untuk Prediksi Kerusakan Mesin pada Industri Manufaktur PT X
Abstract
Abstrak :
Perkembangan teknologi sistem informasi banyak dirasakan di setiap sector ekonomi. PT X merupakan perusahaan manufaktur di bidang percetakan, dimana produktivitas dipengaruhi dari efisiensi mesin. Optimasi produktivitas mesin dapat dilakukan dengan prediktif maintenance. Penelitian ini bertujuan untuk mengembangkan teknik data mining dalam prediktif kerusakan mesin produksi. Fokus utama penelitian adalah untuk mengklasifikasi kerusakan mesin berdasarkan data historis pada PT X. Model klasifikasi yang akan dikembangkan menggunakan algoritma model Naïve Bayes dan Decision Tree. Dalam klasifikasi ada 2 label keputusan yaitu tingkat resiko (tinggi, sedang rendah) dan kegiatan preventif (Ya,Tidak) Evaluasi dilakukan dengan menilai akurasi dan efektivitas setiap model. Hasil uji klasifikasi preventif dengan model Naïve Bayes memiliki nilai akurasi 97,90 %, sedangkan dengan model Decision Tree memiliki nilai akurasi 77%. Hasil uji klasifikasi tingkat resiko dengan model Naïve Bayes nilai akurasi 98% sedangkan dengan model Decision Tree nilai akurasinya 100%. hasil uji menunjukan untuk label preventif dengan 2 kelas lebih baik menggunakan model Naïve Bayes sedangkan label tingkat resiko dengan 3 kelas lebih baik menggunakan model Decision Tree. Hasil uji ini dapat dijadikan acuan Perusahaan X khususnya divisi maintenance dalam melakukan penjadwalan prediktif maintenance. Metode ini juga dapat diterapkan pada Perusahaan lain jika memiliki data historis kerusakan mesin, memiliki mesin dengan jenis operasional yang relevan, dan memiliki tujuan dan klasifikasi yang sesuai.
===================================================
Abstract :
The advancement of information system technology has significantly impacted all economic sectors. PT X, a manufacturing company in the printing industry, experiences productivity fluctuations that are strongly influenced by machine efficiency. Optimizing machine productivity can be achieved through predictive maintenance. This study aims to develop data mining techniques for predicting machine failures in production. The primary focus is to classify machine failures based on historical data from PT X. The classification models employed are the Naïve Bayes algorithm and the Decision Tree algorithm. Two classification labels are used: risk level (high, medium, low) and preventive action (Yes, No). Evaluation was conducted by measuring the accuracy and effectiveness of each model. The classification results for the preventive action label showed that the Naïve Bayes model achieved an accuracy of 97.90%, while the Decision Tree model reached 77%. For the risk level label, the Naïve Bayes model achieved 98% accuracy, and the Decision Tree model achieved 100%. The findings indicate that the Naïve Bayes model is more suitable for binary classifications such as preventive actions, while the Decision Tree model performs better in multi-class classifications such as risk levels. These results can serve as a reference for PT X’s maintenance division in scheduling predictive maintenance. Moreover, the method can be applied to other companies, provided they have historical machine failure data, machines with similar operational characteristics, and compatible classification objectives
Keywords
Full Text:
PDFReferences
[1] M. F. J. Pratiwi, S. Yuniarti, S. Sunardi, and E. Y. Prihantono, “The operational process efficiency and profitability on food and beverage companies in Indonesia,” J. Penelit., vol. 20, no. 2, pp. 84–94, 2023, doi: 10.26905/jp.v20i2.12751.
[2] E. D. Putri and H. Herlina, “Analisis Kelayakan Investasi Mesin Printing Percetakan Offset untuk Meningkatkan Kapasitas Hasil Output pada PT. XYZ,” J. Tek. Ind. Terintegrasi, vol. 7, no. 2, pp. 921–932, 2024, doi: 10.31004/jutin.v7i2.27850.
[3] D. D. Candra and W. Setiafindari, “Analisis efektivitas kinerja mesin printing SM-52 untuk produk buku tahunan,” Jumantara J. Manaj. dan Teknol. Rekayasa, vol. 3, no. 1, pp. 33–42, 2024, doi: 10.28989/jumantara.v3i1.1769.
[4] Arif Rahman and S. Perdana, “ANALISIS PRODUKTIVITAS MESIN PERCETAKAN PERFECT BINDING DENGAN METODE OEE DAN FMEA Arif Rahman dan Surya Perdana,” J. Ilm. Tek. Ind., vol. 7, no. 1, pp. 34–42, 2019.
[5] P. Studi, T. Industri, F. Teknik, O. E. Effectiveness, and S. Tools, “Menurunkan Downtime Pada Mesin Slitter Dengan Menggunakan Metode Quality Control Circle ( QCC ) dan Overall Equipment Effectiveness ( OEE ) Di Perusahaan Manufaktur Makanan Abstrak,” vol. 4, pp. 291–307, 2022.
[6] A. Haseng and M. G. Sono, “Analisis Perawatan Preventif Dalam Penggantian Komponen Mesin Untuk Meminimumkan Downtime Metode Reliability Centered Maintenance ( Rcm ) Di Pt . Pln ( Persero ) Ulp Banggai,” no. 1, pp. 1–11, 2024.
[7] I. A. Marie, L. Hakim, D. Sugiarto, and W. Septiani, “Analisis Data Gangguan Kerusakan Mesin Produksi Menggunakan Teknik Association Rules,” J. Ilm. Tek. Ind., vol. 7, no. 1, pp. 43–52, 2019, doi: 10.24912/jitiuntar.v7i1.5035.
[8] I. H. Witten, E. Frank, C. Hall, and J. Pal, Data mining Practical Machine learning Tools and Techniques. Morgan Kaufmann, 2016.
[9] I. Gede Iwan Sudipa et al., DATA MINING. [Online]. Available: www.globaleksekutifteknologi.co.id
[10] Ardiyansyah, P. A. Rahayuningsih, and R. Maulana, “Analisis Perbandingan Algoritma Klasifikasi Data mining Untuk Dataset Blogger Dengan Rapid Miner,” J. Khatulistiwa Inform., vol. VI, no. 1, pp. 20–28, 2018.
[11] Sekar Setyaningtyas, B. Indarmawan Nugroho, and Z. Arif, “Tinjauan Pustaka Sistematis: Penerapan Data mining Teknik Clustering Algoritma K-Means,” J. Teknoif Tek. Inform. Inst. Teknol. Padang, vol. 10, no. 2, pp. 52–61, 2022, doi: 10.21063/jtif.2022.v10.2.52-61.
[12] D. Muchlinski, “Machine learning and deep learning,” Elgar Encycl. Technol. Polit., pp. 114–118, 2022, doi: 10.4337/9781800374263.machine.learning.deep.
[13] G. Mariscal, Ó. Marbán, and C. Fernández, “A survey of data mining and knowledge discovery process models and methodologies,” Knowl. Eng. Rev., vol. 25, no. 2, pp. 137–166, 2010, doi: 10.1017/S0269888910000032.
[14] M. I. Kamil and A. P. Wibowo, “Implementation of the Naive Bayes Classifier Algorithm for Classifying Toddler Nutritional Status,” vol. 8, no. 2, pp. 421–427, 2024.
[15] N. Agustina, D. H. Citra, W. Purnama, C. Nisa, and A. R. Kurnia, “Implementasi Algoritma Naive Bayes untuk Analisis Sentimen Ulasan Shopee pada Google Play Store,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 2, no. 1, pp. 47–54, 2022, doi: 10.57152/malcom.v2i1.195.
[16] A. Nugroho and Y. Religia, “Analisis Optimasi Algoritma Klasifikasi Naive Bayes menggunakan Genetic Algorithm dan Bagging,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 3, pp. 504–510, 2021, doi: 10.29207/resti.v5i3.3067.
[17] D. A. Mukhsinin, M. Rafliansyah, S. A. Ibrahim, R. Rahmaddeni, and D. Wulandari, “Implementasi Algoritma Decision Tree untuk Rekomendasi Film dan Klasifikasi Rating pada Platform Netflix,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 2, pp. 570–579, 2024, doi: 10.57152/malcom.v4i2.1255.
[18] Islamia Nuraini, Arnowo Hari Wibowo, Muhammad Asrol, Taufik, and Dyah Lang Wilis, “ANALISIS PEMELIHARAAN PREDIKTIF KENDARAAN OPERASIONAL MENGGUNAKAN ALGORITMA NAÏVE BAYES DAN DECISION TREE,” J. Publicuho, vol. 7, no. 2, pp. 591–603, May 2024, doi: 10.35817/publicuho.v7i2.412.
[19] M. Y. Saputra and I Wayan Santiyasa, “Optimizing Machine learning Performance with The Naive Bayes Classifier Process in Smart Farming,” J. Nas. Pendidik. Tek. Inform., vol. 13, no. 2, pp. 382–393, 2024, doi: 10.23887/janapati.v13i2.76926.
[20] D. A. Muthia, “Opinion Mining Pada Review Buku Menggunakan Algoritma Naive Bayes,” J. Tek. Komput., vol. 2, no. 1, pp. 1–8, 2016.
[21] M. Iqbal, S. Miskiyah, S. L. Sham, S. Anwar, and M. H. Fuad, “Perbandingan Metode Decision Tree dan Naive Bayes Pada Tingkat Penjualan Minuman Kopi di Kopi Pawon Nusantara,” J. Insa. J. Inf. Syst. Manag. Innov., vol. 4, no. 1, pp. 27–34, 2024, doi: 10.31294/jinsan.v4i1.3682.
[22] S. Pramanik, D. Banik, D. Bhattacharjee, M. Nasipuri, M. K. Bhowmik, and G. Majumdar, “Suspicious-Region Segmentation From Breast Thermogram Using DLPE-Based Level Set Method,” IEEE Trans. Med. Imaging, vol. 38, no. 2, pp. 572–584, 2019, doi: 10.1109/TMI.2018.2867620.
[23] N. Afkhami-Jeddi, T. Hartman, and A. Tajdini, “Fast conformal bootstrap and constraints on 3d gravity,” J. High Energy Phys., vol. 2019, no. 5, pp. 1–31, 2019, doi: 10.1007/JHEP05(2019)087.
[24] I. O. Muraina, “Ideal Dataset Splitting Ratios in Machine learning Algorithms: General Concerns for Data Scientists and Data Analysts,” 7th Int. Mardin Artuklu Sci. Res. Conf., no. February, pp. 496–504, 2022, [Online]. Available: https://www.researchgate.net/publication/358284895_IDEAL_DATASET_SPLITTING_RATIOS_IN_MACHINE_LEARNING_ALGORITHMS_GENERAL_CONCERNS_FOR_DATA_SCIENTISTS_AND_DATA_ANALYSTS
[25] A. Adam, M. I. Shapiai, Z. Ibrahim, M. Khalid, and L. Jau, “Development of a hybrid Artificial Neural Network - Naive Bayes classifier for binary classification problem of imbalanced datasets,” ICIC Express Lett., vol. 5, pp. 3171–3175, 2011.
[26] M. Bramer, “Using J-pruning to reduce overfitting in classification trees,” Knowledge-Based Syst., vol. 15, no. 5, pp. 301–308, 2002, doi: https://doi.org/10.1016/S0950-7051(01)00163-0.
Refbacks
- There are currently no refbacks.