Pengembangan Gerbang Rumah Otomatis Menggunakan Blynk Berbasis IoT
Abstract
Abstrak:
Pengoperasian gerbang rumah secara manual sering kali menjadi kendala bagi pengguna yang memerlukan kontrol lebih fleksibel dari jarak jauh. Penelitian ini bertujuan untuk mengembangkan prototype sistem gerbang otomatis berbasis IoT menggunakan aplikasi Blynk yang memungkinkan pengguna mengontrol gerbang secara real-time melalui perangkat mobile. Metode yang digunakan adalah metode prototype, yang melibatkan tahapan identifikasi kebutuhan, perancangan, pengembangan, dan pengujian sistem secara berulang untuk memastikan hasil yang optimal. Hasil penelitian menunjukkan bahwa sistem gerbang otomatis ini mampu berfungsi dengan baik, memberikan respons cepat terhadap perintah pengguna melalui aplikasi, serta menyediakan notifikasi status gerbang yang akurat. Sistem juga telah dilengkapi dengan autentikasi pengguna untuk menjaga keamanan akses, sehingga hanya pengguna yang sah yang dapat mengontrol gerbang. Pengujian sistem menunjukkan bahwa koneksi internet yang stabil sangat berpengaruh terhadap performa sistem, terutama dalam hal responsivitas dan keandalan kontrol jarak jauh. Selain itu, sistem ini terbukti memberikan kenyamanan tambahan bagi pengguna, yang dapat mengoperasikan gerbang dengan mudah tanpa harus berada di lokasi. Hasil pengujian prototype sistem gerbang rumah otomatis berbasis IoT menunjukkan kinerja yang baik. Rata-rata respons waktu untuk membuka atau menutup gerbang adalah 1,5 detik, memenuhi kriteria kurang dari 2 detik. Dalam pengujian stabilitas koneksi, sistem berhasil mengendalikan gerbang dengan tingkat keberhasilan 95%, meskipun dalam kondisi jaringan yang lemah. Keamanan akses juga diuji, dengan sistem berhasil mencegah 100% akses tidak sah, memastikan hanya pengguna terverifikasi yang dapat mengontrol gerbang. Hasil ini menunjukkan bahwa sistem efektif, cepat, dan aman, serta dapat diterapkan untuk kontrol gerbang rumah jarak jauh yang praktis dan terpercaya.
===================================================
Abstract:
The manual operation of home gates often poses challenges for users who require more flexible remote control. This study aims to develop a prototype of an IoT-based automatic gate system using the Blynk app, allowing users to control the gate in real-time via mobile devices. The method used is the prototype method, which involves the stages of need identification, design, development, and iterative system testing to ensure optimal results. The research findings indicate that the automatic gate system functions well, providing quick responses to user commands through the app, as well as accurate gate status notifications. The system is also equipped with user authentication to maintain access security, ensuring that only authorized users can control the gate. System testing shows that a stable internet connection significantly impacts system performance, especially in terms of responsiveness and reliability of remote control. Furthermore, this system proves to provide added convenience for users, enabling them to operate the gate easily without being on-site. The testing results of the IoT-based automatic home gate prototype demonstrate good performance. The average response time for opening or closing the gate is 1.5 seconds, meeting the criterion of less than 2 seconds. In connection stability testing, the system successfully controls the gate with a 95% success rate, even in weak network conditions. Access security was also tested, with the system successfully preventing 100% of unauthorized access, ensuring that only verified users can control the gate. These results demonstrate that the system is effective, fast, secure, and can be applied for practical and reliable remote home gate control.
Keywords
Full Text:
PDFReferences
[1] A. Rejeb et al., “The Internet of Things (IoT) in healthcare: Taking stock and moving forward,” Internet of Things, vol. 22, p. 100721, 2023, doi: https://doi.org/10.1016/j.iot.2023.100721.
[2] M. Osama et al., “Internet of Medical Things and Healthcare 4.0: Trends, Requirements, Challenges, and Research Directions,” Sensors, vol. 23, no. 17. 2023. doi: 10.3390/s23177435.
[3] M. A. Sheba, D.-E. A. Mansour, and N. H. Abbasy, “A new low-cost and low-power industrial internet of things infrastructure for effective integration of distributed and isolated systems with smart grids,” IET Gener. Transm. Distrib., vol. 17, no. 20, pp. 4554–4573, Oct. 2023, doi: https://doi.org/10.1049/gtd2.12951.
[4] H. Yar, A. S. Imran, Z. A. Khan, M. Sajjad, and Z. Kastrati, “Towards Smart Home Automation Using IoT-Enabled Edge-Computing Paradigm,” Sensors, vol. 21, no. 14. 2021. doi: 10.3390/s21144932.
[5] I. Cvitić, D. Peraković, M. Periša, A. Jevremović, and A. Shalaginov, “An Overview of Smart Home IoT Trends and related Cybersecurity Challenges,” Mob. Networks Appl., vol. 28, no. 4, pp. 1334–1348, 2023, doi: 10.1007/s11036-022-02055-w.
[6] M. Sayeduzzaman, T. Hasan, A. A. Nasser, and A. Negi, “An Internet of Things-Integrated Home Automation with Smart Security System,” in Automated Secure Computing for Next‐Generation Systems, 2024, pp. 243–273. doi: https://doi.org/10.1002/9781394213948.ch13.
[7] G. Vardakis, G. Hatzivasilis, E. Koutsaki, and N. Papadakis, “Review of Smart-Home Security Using the Internet of Things,” Electronics, vol. 13, no. 16. 2024. doi: 10.3390/electronics13163343.
[8] E. Quaranta et al., “Digitalization and real-time control to mitigate environmental impacts along rivers: Focus on artificial barriers, hydropower systems and European priorities,” Sci. Total Environ., vol. 875, p. 162489, 2023, doi: https://doi.org/10.1016/j.scitotenv.2023.162489.
[9] N. K. Pandey, K. Kumar, G. Saini, and A. K. Mishra, “Security issues and challenges in cloud of things-based applications for industrial automation,” Ann. Oper. Res., vol. 342, no. 1, pp. 565–584, 2024, doi: 10.1007/s10479-023-05285-7.
[10] P. M. Rao and B. D. Deebak, “A comprehensive survey on authentication and secure key management in internet of things: Challenges, countermeasures, and future directions,” Ad Hoc Networks, vol. 146, p. 103159, 2023, doi: https://doi.org/10.1016/j.adhoc.2023.103159.
[11] S. Abrishami, J. Goulding, and F. Rahimian, “Generative BIM workspace for AEC conceptual design automation: prototype development,” Eng. Constr. Archit. Manag., vol. 28, no. 2, pp. 482–509, Jan. 2021, doi: 10.1108/ECAM-04-2020-0256.
[12] M. Bordegoni, M. Carulli, and E. Spadoni, “Prototyping: Practices and Techniques BT - Prototyping User eXperience in eXtended Reality,” M. Bordegoni, M. Carulli, and E. Spadoni, Eds., Cham: Springer Nature Switzerland, 2023, pp. 29–47. doi: 10.1007/978-3-031-39683-0_3.
[13] D.-Y. Kim and S.-A. Kim, “An exploratory model on the usability of a prototyping-process for designing of Smart Building Envelopes,” Autom. Constr., vol. 81, pp. 389–400, 2017, doi: https://doi.org/10.1016/j.autcon.2017.03.012.
[14] S. Rajput, N. Talpur, R. Boudville, G. M. E. Abro, B. Talpur, and F. Zahid, “Modernizing Home Protection: An IoT-Driven Approach with Smart Lock and Android Application,” in 2024 IEEE 14th International Conference on Control System, Computing and Engineering (ICCSCE), 2024, pp. 82–87. doi: 10.1109/ICCSCE61582.2024.10696484.
[15] L. Portilla et al., “Wirelessly powered large-area electronics for the Internet of Things,” Nat. Electron., vol. 6, no. 1, pp. 10–17, 2023, doi: 10.1038/s41928-022-00898-5.
[16] F. Debbabi, R. Jmal, and L. Chaari Fourati, “5G network slicing: Fundamental concepts, architectures, algorithmics, projects practices, and open issues,” Concurr. Comput. Pract. Exp., vol. 33, no. 20, p. e6352, Oct. 2021, doi: https://doi.org/10.1002/cpe.6352.
Refbacks
- There are currently no refbacks.