Kombinasi Customer Relationship Management dan Product Recommendation System pada Sistem Manajemen UD. Saholoan Berbasis Android
Abstract
Abstrak:
Penelitian ini akan membuat sebuah aplikasi Android dengan tujuan memahami kebutuhan pelanggan dan memberikan pelayanan yang akan meningkatkan manajemen dan kualitas produk sehingga akan menciptakan kelanggengan hubungan antara UD. Saholoan pelanggan. Pengkombinasian Costomer Relationship Management dan Product Recommendation System ini akan memudahkan pengguna untuk menemukan dan memperoleh produk yang sesuai dengan keinginan serta memberikan pengalaman pengguna yang lebih baik. Semua ini bertujuan untuk kemudahan dalam mengakses, melengkapi akurasi serta keoptimalan bagi pelanggan. Hasil analisis menunjukkan bahwa belum ada aplikasi android manajemen sistem yang dapat merekomendasikan produk untuk pengguna atau user, Pendekatan ini menggabungkan Informasi tentang pelanggan seperti riwayat pembelian, preferensi dengan perusahaan. Algoritma yang akan menganalisis pola pembelian dan perilaku browsing untuk menyarankan produk yang mungkin diminati pelanggan. Hasil pengujian menunjukkan bahwa aplikasi berhasil dibangun dan berfungsi dengan baik, Mengkombinasikan Costomer Relationship Management dan Product Recommendation System berhasil memberikan peningkatan volume menajemen dan rekomendasi produk efisiensi pengelolaan inventaris meningkat dengan pengurangan waktu pencatatan stok sebesar 75% dan peningkatan akurasi hingga 98%. Dari sisi penjualan, tercatat kenaikan rata-rata 28% per bulan dengan product turnover rate meningkat 35%. Product Recommendation System menunjukkan performa yang baik dengan precision rate 88% dan conversion rate 42%, mendorong peningkatan cross-selling sebesar 56%.
===================================================
Abstract:
This study will create an Android application with the aim of understanding customer needs and providing services that will improve product management and quality so that it will create a lasting relationship between UD. Saholoan customers. The combination of Customer Relationship Management and Product Recommendation System will make it easier for users to find and obtain products that suit their wishes and provide a better user experience. All of this aims to facilitate access, complete accuracy and optimization for customers. The results of the analysis show that there is no Android application for system management that can recommend products to users, This approach combines information about customers such as purchase history, preferences with the company. Algorithms that will analyze purchasing patterns and browsing behavior to suggest products that customers might be interested in. The test results show that the application was successfully built and functioned well, Combining Customer Relationship Management and Product Recommendation System managed to provide an increase in management volume and product recommendations Inventory management efficiency increased with a reduction in stock recording time of 75% and an increase in accuracy of up to 98%. In terms of sales, an average increase of 28% per month was recorded with a product turnover rate increasing by 35%. The Product Recommendation System performed well with a precision rate of 88% and a conversion rate of 42%, driving a 56% increase in cross-selling.
Keywords
Full Text:
PDFReferences
[1] Reinartz, W., Krafft, M., and Hoyer, W. D. (2004). Assessing and evaluating the Customer Relationship Management Process and its influence on Performance. Marketing Research Journal, volume 41, issue 3, pages 293-305.
[2] Nugraha, I. A., Rosalina, V., and Suherman. (2022). Execution of CRM in a Web-Based Service Information System for Meteorological Services. JSiI (Journal of Information Systems), volume 9, issue 1, pages 36-44. (https://doi.org/10.30656/jsii.v9i1.4390)
[3] Kumar, V., and Reinartz, W. (2012). Managing relationships with customers: Understanding the concept, strategy, and tools. Springer Science & Business Media.
[4] Pradhana (2011). Utilization of CRM Method in Data Management for Dream Paradise Bali Tour & Travel for Analysis and Design purposes. (Thesis, UPN "Veteran" East Java, Surabaya)
[5] Aziz, Y., Hasdiana, H., and Nurjamiyah, N. (2022). Analisis asosiasi rule mining dalam rekomendasi. J. Media Information, volume 4, issue 1, pages 31-39. (doi: 10.55338/jumin.v4i1.403)
[6] Afrisawati, A. and Sahren, S. (2020). Analisis Pemilihan Supplier Menggunakan Metode Moora. Jurteksi, volume 6, issue 3, pages 269-276. (doi: 10.33330/jurteksi.v6i3.827)
[7] Tambunan, C., Manalu, D. R., & Naibaho, J. F. (2018). Integration of CRM in the online ordering and sales system at Gapura Bookstore. (METHODIKA)
[8] Fahmi and Sianturi (2019). Analisis Pemesanan Konsumen di Café The L. Co Coffee Menggunakan Algoritma Apriori. Science and Technology Journal, volume 1, issue 1, pages 52-57.
[9] Pratama, D., & Susanti, E. (2019). Rancang Bangun Sistem Informasi CRM pada Platform Android: Studi Kasus UKM XYZ. Jurnal Informatika dan Sistem Informasi, 10(2), 78–89.
[10] Ricci, F., Rokach, L., & Shapira, B. (2022). Recommender Systems Handbook (3rd ed.). Springer.
[11] Slamet, R., & Winarno, W. W. (2020). Pengembangan Sistem Rekomendasi Produk UKM Menggunakan Metode Content-Based Filtering. Jurnal Sistem Informasi, 12(1), 45–56.
[12] Buttle, F., & Maklan, S. (2019). Customer Relationship Management: Concepts and Technologies (4th ed.). Routledge.
[13] Chen, Y., & Yang, H. (2021). Mobile CRM: A Literature Review and Directions for Future Research. International Journal of Information Management, 56, 102239. https://doi.org/10.1016/j.ijinfomgt.2020.102239
[14] Greenberg, P. (2021). CRM at the Speed of Light: Essential Customer Strategies for the Mobile Economy (5th ed.). McGraw-Hill Education.
[15] Gunawan, R., & Rahmatulloh, A. (2019). Implementasi Customer Relationship Management Berbasis Android pada UD Mitra Pratama. Jurnal Teknologi dan Sistem Informasi, 5(2), 85–94.
Refbacks
- There are currently no refbacks.