Implementasi Animasi Opacity Map untuk Membuat Ilustrasi Digital Artistic Line
Abstract
Abstrak :
Animasi Opacity map merupakan metode sederhana yang di gunakan oleh aplikasi untuk membuat animasi 3 dimensi (3D) untuk membuat model berbasiskan tekstur. Model yang di buat adalah tekstur (2D) yang proyeksikan. Penelitian ini bertujuan untuk mengembangkan metode baru dalam pembuatan ilustrasi digital berbasis garis (artistic line) dengan memanfaatkan teknik animasi Opacity map. Pendekatan ini diharapkan dapat meningkatkan fleksibilitas dan kompleksitas visual dalam proses ilustrasi digital. Metodologi penelitian menggunakan pendekatan eksperimental, yang di kombinasikan dengan teknik penelitian artistic di mana Opacity map diterapkan untuk mengatur tingkat transparansi pada berbagai elemen garis, sehingga menghasilkan efek visual yang dinamis dan berlapis. Hasil utama penelitian menunjukkan teknik dalam menciptakan dimensi dan kedalaman yang lebih kaya pada ilustrasi 2D, yang sebelumnya sulit dicapai dengan teknik manual konvensional. Kontribusi penelitian ini meliputi pengembangan metode yang dapat diaplikasikan dalam berbagai proyek visual 2D, serta menawarkan pendekatan baru dalam desain grafis dan ilustrasi digital yang memungkinkan penciptaan efek visual yang lebih ekspresif dan menarik. Secara lebih luas, penelitian ini memberikan kontribusi bagi perkembangan ilustrasi digital, khususnya dalam memperkaya teknik visual berbasis garis yang dapat diintegrasikan dalam berbagai media kreatif. Output renderer adalah 3D still image atau format non audio visual. Z Modifier yang digunakan adalah UVW map dengan sedikit perubahan pada modifikasi gizmo dan 7 buah parameter yang terdapat pada UVW map. Mapping Parameter terdiri dari Planar, Cylindrical, Spherical, Shrink Warp, Box, Face, XYZ to UVW, dengan parameter Tile UVW rata-rata 1.0 hingga 1.5 untuk U, berada di angka 1.0 untuk V dan 1.5 untuk W dan koordinat Alignment rata-rata berada di titik X.
===============================================
Abstract:
Opacity map animation is a straightforward method employed by applications to create three-dimensional (3D) animations, specifically for developing texture-based models. The result is a projected 2D texture. This research aims to introduce a new technique for creating line-based digital illustrations, referred to as artistic lines, by utilizing Opacity map animation methods. This approach is anticipated to enhance flexibility and visual complexity in the digital illustration process. The research methodology adopts an experimental approach integrated with artistic research techniques. It involves applying an Opacity map to adjust the transparency levels of various line elements, leading to dynamic and layered visual effects. The main findings of the research illustrate how this technique can produce richer dimensions and depth in 2D illustrations—something that was previously challenging to achieve with conventional manual techniques. The contributions of this research include the development of a method applicable to various 2D visual projects, as well as the introduction of a new approach to graphic design and digital illustration. This enables the creation of more expressive and engaging visual effects. More broadly, the research advances the field of digital illustration, particularly in enhancing line-based visual techniques that can be integrated into diverse creative media. The output of the renderer is a 3D still image or a non-audiovisual format. The Z Modifier utilized in this research is the UVW map, which undergoes slight adjustments in the gizmo modification and includes seven parameters within the UVW map. The mapping parameters encompass Planar, Cylindrical, Spherical, Shrink Warp, Box, Face, and XYZ to UVW conversions. The Tile UVW parameters range from an average of 1.0 to 1.5 for U, with V fixed at 1.0 and W at 1.5, while the alignment coordinates average at the X point.
Keywords
Full Text:
PDFReferences
[1] B. Pu, L. Bao, and K. Yang, “Research on Computer 3DS MAX Aided Environmental Art Design Based on Performance Technology and Visual Art,” J. Phys. Conf. Ser., vol. 1744, no. 3, p. 032040, Feb. 2021, doi: 10.1088/1742-6596/1744/3/032040.
[2] A. Autodesk, “Heat and Opacity Maps,” Ipsos Encyclopedia. Ipsos, May 19, 2016. Accessed: Aug. 30, 2022. [Online]. Available: https://www.ipsos.com/en/ipsos-encyclopedia-heat-and-opacity-maps
[3] S. W. Handani, D. I. S. Saputra, and F. N. Sari, “Desain Piramida 3D Holographic Reflection Sebagai Bentuk Visualisasi Bangunan,” in CITISEE 2017, Purwokerto: AMIKOM Purwokerto, 2017, pp. 105–108. [Online]. Available: https://citisee.amikompurwokerto.ac.id/assets/proceedings/2017/TI20.pdf
[4] K. L. Murdock, Autodesk 3ds Max 2013 BIBLE. United States of America: John Wiley & Sons, Inc, 2013.
[5] A. R. Aguilera and L. Alejandro, “Spatial opacity maps for direct volume rendering of regions of interest,” Eurographics Assoc., pp. 23–30, 2016, doi: http://dx.doi.org/10.2312/ceig.20161310.
[6] L. Flavell, Beginning Blender: Open Source 3D Modeling, Animation, and Game Design. United States of America 9: Apress, 2010.
[7] N. Elmqvist, Assarssons Ulf, and P. Tsigas, “Dynamic Transparency for 3D Visualization: Design and Evaluation,” vol. 8, no. 1 (2009), pp. 75–88, Jan. 2009, doi: https://doi.org/10.20870/IJVR.2009.8.1.2715.
[8] A. Chopine, 3D Art Essentials. in Computer & Animation. UK: CRC Press, 2012.
[9] B. Huang, Z. Yu, A. Chen, A. Geiger, and S. Gao, “2D Gaussian Splatting for Geometrically Accurate Radiance Fields,” in SIGGRAPH Conference Papers ’24, Denver, CO, USA: ACM, Aug. 2024, pp. 1–11. doi: https://doi.org/10.1145/3641519.3657428.
[10] J. Kim, Jongwoo Lim and J. Lim, “Integrating Meshes and 3D Gaussians for Indoor Scene Reconstruction with SAM Mask Guidance,” Cornell University, 2024. [Online]. Available: https://arxiv.org/abs/2407.16173
[11] D. Crispin, “The Deterritorialization and Reterritorialization of Artistic Research,” Universidade Aveiro, vol. 3, no. 2, pp. 45–59, 2019, doi: 10.34624/impar.v3i2.14146.
[12] P. Sun, “Dynamic image design of digital media based on 3Ds MAX technology,” Assoc. Comput. Mach., pp. 890–894, Dec. 2021, doi: https://doi.org/10.1145/3510858.3511417.
[13] K. Walczak and J. Flotynski, “Inference-based creation of synthetic 3D content with ontologies,” Springer Sci., vol. 78, no. 8, pp. 12607–12638, 2019, doi: https://doi.org/10.1007/s11042-018-6788-5.
[14] Husen Hendriyana, Rupa Dasar (Nirmana): Asas dan Prinsip Dasar Seni Visual. in Art & General. Yogyakarta: Penerbit Andi, 2022. [Online]. Available: https://books.google.co.id/books?id=BrJuEAAAQBAJ
[15] K. Best, Design Management: Managing Design Strategy, Process and Implementation. in Required Reading Range. Bloomsbury Publishing, 2015. [Online]. Available: https://books.google.co.id/books?id=YVA3DQAAQBAJ
[16] D. Isheden, “Fourier Opacity Mapped Order-Independent Transparency in real-time graphics,” In Degree Project, In Computer Science, First Level, KTH Royal Institute of Technology CSC School, Sweden, 2015. [Online]. Available: https://www.diva-portal.org/smash/get/diva2:811329/FULLTEXT01.pdf
[17] C. Gray and J. Malins, Visualizing Research: A Guide to the Research Process in Art and Design. UK: Ashgate Publishing Company, 2004.
[18] K. Mustaqim, D. R. Adiwijaya, and F. Indrajaya, “Penelitian Atas Penelitian Seni dan Desain: Suatu Studi Kerangka Filosofis-Paradigmatis bagi Penelitian Seni dan Desain Visual,” Binus J. Publ., vol. 4, no. 2, pp. 995–1016, Oktober 2013, doi: https://doi.org/10.21512/humaniora.v4i2.3541.
[19] S. H. Yudhanto and F. Risdianto, “The Future of VR-Based Video Games in Indonesia,” Chitrolekha J. Art Des., vol. 7, no. 1, pp. 1–9, Apr. 2023, doi: https://doi.org/10.21659/cjad.71.v7n102.
[20] A. Murwanti, “Penciptaan Desain Berbasis Praktik Eksperi-Mental Sebagai Penelitian Ilmiah,” Fak. Seni Dan Desain Univ. Multimed. Nusant., vol. 6, no. 02, pp. 7–18, Sep. 2016, doi: https://doi.org/https://doi.org/10.31937/ultimart.v6i2.377.
[21] V. Michelkevičius, Mapping Artistic Research Towards Diagrammatic Knowing. Lithuania: Vilnius Academy of Arts press, 2018. [Online]. Available: https://d1wqtxts1xzle7.cloudfront.net/55273575/mapping_artistic_research_preview-with-cover-page-v2.pdf?Expires=1661868880&Signature=gnew2j2Y8bTPI7VPwp-s9HKqoxMKEyfgAX9fPQUTWyE5AyqjR1zsysFidzmyZVx7V-aHO2WkpYJLtmUH9n-bXx~~egKi8xFNcqI2gOoSAovoobcltFnNtaEmJtQEB2AmxvFeLGl-uP7S63GbQ0-ndCO8iMMT8RhyIo1G1mZqG7FR6qqG3Uj1KaLVGyali7vqhA35Oes1qVueSXLiRXTSrSZTW6gwiVXkT~gOmnLQX1AamvkKAxiSUwYwtFqMLkS1ruqUDbS-CiNq0nfizD19WlxWIDkl4vqdSmWlZTu9-eDPSeuzv8NxaNPZUpewLqZ1S4JxUzxqa-AmLd3d2~-6jg__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
[22] Y. Gao, “Application of 3D Design Technology in Substation Design,” IOP Conf. Ser. Mater. Sci. Eng., vol. 782, no. 3, p. 032086, Mar. 2020, doi: 10.1088/1757-899x/782/3/032086.
[23] M. Zhang, “3D Animation Scene Plane Design Based on Virtual Reality Technology,” in The 2020 International Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy, J. MacIntyre, J. Zhao, and X. Ma, Eds., Cham: Springer International Publishing, 2021, pp. 400–404. doi: 10.1007/978-3-030-62746-1_59.
[24] M. M. Aristov, J. W. Moore, and J. F. Berry, “Library of 3D Visual Teaching Tools for the Chemistry Classroom Accessible via Sketchfab and Viewable in Augmented Reality,” J. Chem. Educ., vol. 98, no. 9, pp. 3032–3037, 2021, doi: 10.1021/acs.jchemed.1c00460.
[25] H.-Y. Pai, “Texture designs and workflows for physically based rendering using procedural texture generation,” in 2019 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE), Yunlin, Taiwan: https://ieeexplore.ieee.org, 2019, pp. 195–198. doi: 10.1109/ECICE47484.2019.8942651.
[26] A. de Rooij, E. Dekker, K. Slegers, and M. M. Biskjaer, “How graphic designers rely on intuition as an ephemeral facility to support their creative design process,” Int. J. Des. Creat. Innov., vol. 9, no. 4, pp. 252–268, 2021, doi: 10.1080/21650349.2021.1951358.
Refbacks
- There are currently no refbacks.